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A B S T R A C T

Experiments on passive skeletal muscle on different species show a strong asymmetry in the observed tension-
compression mechanical behavior. This asymmetry shows that the tension modulus is two orders of magnitude
higher than the compression modulus. Until now, traditional analytical constitutive models have been unable to
capture that strong asymmetry in anisotropic solids using the same material parameters. In this work we present
a model which is able to accurately capture five experimental tests in chicken pectoralis muscle, including the
observed tension-compression asymmetry. However, aspects of the anisotropy of the tissue are not captured by
the model.

1. Introduction

Computational modelling of the human body has many important
and practical applications, but the constitutive representation of soft
tissues presents challenges. Skeletal muscle presents anisotropic and
nonlinear elastic behavior as well as significant viscoelasticity and it is
largely incompressible, similar to other biological soft tissues. However,
in addition a strong tension-compression asymmetry has now been
observed both in porcine and in chicken tissue, where the stress in
tension is typically two orders of magnitude higher than in compression
in all directions of loading (Takaza et al., 2013; Loocke et al., 2006;
Mohammadkhah et al., 2016). This asymmetry is not captured by
current constitutive modelling approaches using a single set of material
parameters (Mohammadkhah et al., 2016). A recent generalisation of
Ogden hyperelasticity in terms of Seth-Hill strains permits some ten-
sion/compression asymmetry (Moerman et al., 2016), but it is unclear if
it can capture the extent that has been experimentally observed (Takaza
et al., 2013; Loocke et al., 2006; Mohammadkhah et al., 2016). Carti-
lage, shape memory alloys and other materials also exhibit a degree of
tension/compression asymmetry, and robust numerical approaches for
modelling this response are currently in focus (Zhang et al., 2016; Du
and Guo, 2014; Du et al., 2016). In this Technical Note, application of
(1) the general mechanics theory of transverse isotropy in the in-
finitesimal strain range and (2) the recently developed What-You-Pre-
scribe-Is-What-You-Get (WYPiWYG) formulation (Sussman and Bathe,
2009; Latorre and Montáns, 2013, 2014; Crespo et al., 2017) for the
finite strain domain to the challenge of tension/compression asym-
metry in passive skeletal muscle stress stretch responses are presented.

The recent experimental data on chicken pectoralis muscle are used to
assess the model fitting capabilities (Mohammadkhah et al., 2016). In
particular, the paper assesses the extent to which the models can si-
multaneously capture the tension and compression aspects of the ex-
perimental tests. Some results obtained from the WYPiWYG formula-
tion employed in this work are initially surprising. For this reason the
behavior of chicken pectoralis muscle is first assessed in the context of
the classical small strain theory, but allowing for different moduli in
tension and compression. Since the WYPiWYG formulation is compa-
tible with infinitesimal theory, equivalent results are obtained when
using either the small strain theory or the large strain WYPiWYG for-
mulation. In Section 3 we present a stored energy function which si-
multaneously captures the behavior of the anisotropic five experiments
in the finite strain regime.

2. Transversely isotropic infinitesimal strain response

2.1. Strain energy function

Consider an incompressible transversely isotropic material with
different axial behavior in tension and compression along its preferred
material directions. The tension/compression asymmetry holds even for
small strains, so different Young's moduli for tension and compression
are obtained from uniaxial testing. The isotropic plane is defined by
axes 1 and 2 (direction 1 is the muscle cross-fibre direction) and the
muscle fibre direction is axis 3. Then, ε11, ε22 and ε33 are the axial
components in preferred directions of the infinitesimal isochoric strain
tensor ε and = +ε ε ε13
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including the shear components ε13 and ε23. We can exactly char-
acterize this material with a single isochoric strain energy function of
the form

= + + +ε ε ε ε ω ε ω ε ω ε ω ε( , , , ) ( ) ( ) ( ) 2 ( )11 22 33 13
#

11 11 11 22 33 33 13 13
#W (1)

with ω ε( )ii , =i {1, 3}, including the tension/compression asymmetry
effects, i.e. being piecewise bi-quadratic—subscripts c and t refer to
compression and tension, respectively
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# being quadratic—shear behavior within preferred planes is

always symmetric
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The five deviatoric moduli (material constants) μ c
11, μ t

11, μ c
33, μ t

33 and μ13
characterize the generally bi-linear strain-stress response. This additive,
fully uncoupled decomposition in terms of the small strain tensor
components in preferred material directions is not a hypothesis within
the incompressible infinitesimal strain setting, but rather it is a con-
sequence of taking such a limit in which possible higher order couplings
vanish.

2.2. Tension/compression uniaxial tests along fibre and cross-fibre
directions

We consider both tension and compression uniaxial tests along both
cross-fibre and fibre directions, i.e. four uniaxial tests from which we
should be able to determine the four material constants μ c

11, μ t
11, μ c

33 and
μ t

33. In these cases ≡ε ε11 1, ≡ε ε22 2 and ≡ε ε33 3 are isochoric principal
strains. From the tensile test along the cross-fibre direction 1 we ha-
ve—i.e. >ε 01

= ′ + = +σ ω ε p μ ε p( ) 2 t
1 11 1 11 1 (4)

where σ1 is the (Cauchy) stress in axis 1 and p is the pressure Lagrange
multiplier associated to the incompressibility constraint + + =ε ε ε 01 2 3
to be determined from the boundary conditions. In the other axes we
have

= ′ + = + = − +ω ε p μ ε p μ ν ε p0 ( ) 2 2c c t
11 2 11 2 11 12 1 (5)

= ′ + = + = − +ω ε p μ ε p μ ν ε p0 ( ) 2 2c c t
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where, according to experimental evidence (Mohammadkhah et al.,
2016), we have assumed positive Poisson ratios in both axes 2 and 3
during the tensile test in axis 1, i.e. transverse contraction given by

= − <ε ν ε 0t
2 12 1 and = − <ε ν ε 0t

3 13 1 , so we have used the moduli μ c
11 and

μ c
33 in Eqs. (5) and (6), respectively. The Lagrange multiplier p may be

eliminated and the incompressibility condition (which also results in
+ =ν ν 1t t

12 13 ) be employed to arrive at
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where Y t
1 is the Young modulus during the tensile test in direction 1.

Equivalently, for a compression test
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where ν c
12, ν c

13 and Y c
1 are the Poisson ratios and the Young modulus

during the uniaxial compression test in direction 1, respectively. Per-
forming similar algebra for a test in direction 3
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where the subscripts indicate the respective axes and the superscripts t
and c mean tension and compression, respectively. Considering tension
and compression in the muscle fibre and cross fibre directions shows
that only four of these constants are independent. From these equations
we can determine μ c

11, μ t
11, μ c

33 and μ t
33, to which μ13 is added. If we use

the four Young's moduli to determine the material constants, the
Poisson's ratios are automatically obtained as result. We now solve Eqs.
(7)2, (8)2, (9)2 and (9)3 taking the reference Young's moduli in the
underformed configuration from the experimental data from chicken
pectoralis muscle, provided in Mohammadkhah et al. (2016), which we
have measured approximately as

= = = =Y Y Y Y163 kPa, 2.95 kPa, 100 kPa, 2.70 kPat c t c
1 1 3 3 (10)

The tensile response is seen to be two orders of magnitude larger than in
compression for both directions, as noted in Mohammadkhah et al.
(2016). Moreover, chicken muscle tissue is most compliant in the fibre
direction 3 (denoted longitudinal therein and labelled L) than in the
cross-fibre direction 1 (denoted transverse therein and labelled T) for
both tensile and compressive applied deformation. Using the experi-
mental yield moduli, the previous equations give the solution1

= = − = = −μ μ μ μ104 kPa, 40.4 kPa, 70.2 kPa, 50.6 kPat c t c
11 11 33 33

(11)

which in turn result in the following (not independent) Poisson's ratios

= =ν ν0.44 and 0.60t c
13 13 (12)

These transverse-to-axial strain ratios are different to those actually
observed in the tissue (see Table 3 in Mohammadkhah et al., 2016,
namely ≡ ≈ν ν 0.83t

TL
t

13 and ≡ ≈ν ν 0.34c
TL
c

13 ). These are given for larger
deformation levels and in terms of logarithmic strain ratios, hence they
are not directly comparable with the present solution. These differences
in computed continuum Poisson's ratios and experimental ones could be
explained in part from the fact that they have been predicted using a
purely continuum theory, assuming a sufficiently large scale such that
the continuum principles hold, whereas in muscle the size of the spe-
cimen may be relevant in the observed behavior at larger than usual
scales (Meyer and Lieber, 2011; Meyer et al., 2011; Gras et al., 2013).
Furthermore, passive muscle behavior under compression is somewhat
dictated by specimen size at the tissue level (Simms et al., 2017) where,
additionally, the difficulty in imposing common boundary conditions
for every specimen size, along with differences in fluid exudation, could
have some adverse effects. Since our model captures exactly the tests
presented to the model, all the mentioned discrepancies are reflected in
the Poisson ratios.

The deviatoric moduli given in Eq. (11) include two positive moduli
associated with both tension branches in Eq. (2) and two negative
moduli associated with both compression branches in Eq. (2). Tradi-
tional isochoric hyperelastic models, based on continuously differenti-
able analytical hyperelastic functions, are unable to include this type of
positive-tension/negative-compression asymmetry. Importantly, the
solution encountered herein in an infinitesimal scenario may explain
why experimental data from this specific type of skeletal muscle has not

1 Two more solutions are obtained, but they are rejected because yield negative Poisson
ratios as a consequence, which is in contradiction with the initial hypotheses considered
herein (see, for example, Eqs. (5) and (6)) based on experimental evidence
(Mohammadkhah et al., 2016).
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