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A B S T R A C T

The mechanical performance of biological tissues is underpinned by a complex and finely balanced structure.
Central to this is collagen, the most abundant protein in our bodies, which plays a dominant role in the
functioning of tissues, and also in disease. Based on the collagen meshwork of articular cartilage, we have
developed a bottom-up spring-node model of collagen and examined the effect of fibril connectivity,
implemented by crosslinking, on mechanical behaviour. Although changing individual crosslink stiffness within
an order of magnitude had no significant effect on modelling predictions, the density of crosslinks in a
meshwork had a substantial impact on its behaviour. Highly crosslinked meshworks maintained a ‘normal’
configuration under loading, with stronger resistance to deformation and improved recovery relative to sparsely
crosslinked meshwork. Stress on individual fibrils, however, was higher in highly crosslinked meshworks.
Meshworks with low numbers of crosslinks reconfigured to disease-like states upon deformation and recovery.
The importance of collagen interconnectivity may provide insight into the role of ultrastructure and its
mechanics in the initiation, and early stages, of diseases such as osteoarthritis.

1. Introduction

Articular cartilage performs an impressive mechanical function,
which is underpinned by a hierarchical structural configuration of type
II collagen, proteoglycans, and interstitial fluid (Huber et al., 2000). As
one of the main determinants of function in the tissue, changes to the
collagen meshwork are central to disease processes (Hwang et al.,
1992; Hunziker, 1999; Brown et al., 2012; Stolz et al., 2009). Collagen-
collagen interactions dominate the cohesive strength of the matrix
(Broom and Silyn-Roberts, 1990) and therefore the resistance to
mechanical damage progression.

The breakdown from the intermeshed, pseudo-random collagen
configuration at the micrometer scale to form aligned fibre bundles has
been identified as a mechanically irreversible step in the damage
process (Brown et al., 2012) and has long been associated with
abnormal cartilage softening (Broom, 1982). A recent study has further
found localised regions of collagen meshwork disruption and reconfi-
guration at early stages of disease before the appearance of histological
changes (Brown et al., 2014). An improved understanding of the
mechanics of the collagen meshwork, and the implications of its
properties and connectivity, is therefore of interest for osteoarthritis
pathogenesis, diagnostics and the design of regenerative medicine
strategies.

Computational modelling provides an ideal platform from which to
explore mechano-structural changes. In recent years, increasingly
sophisticated constitutive models have been developed to represent
tissue-level cartilage mechanics (Wilson et al., 2006; Pierce et al., 2013;
Ateshian et al., 2009; Wilson et al., 2005; Deneweth et al., 2013;
Wilson et al., 2007). With this sophistication has come an improved
representation of structure. Wilson et al., for example, integrated the
relation between permeability and tissue composition with a viscoe-
lastic constitutive relation within a fibril-reinforced model for predict-
ing the equilibrium and transient response of articular cartilage during
compression, indentation and swelling tests (Wilson et al., 2006).
Ateshian et al. applied continuous fibre angular distributions to model
the solid matrix of cartilage and successfully predicted experimental
observations of the tissue's equilibrium response to mechanical and
osmotic loading (Ateshian et al., 2009).

However, such models do not incorporate details from individual
fibres but instead consider the impact of average fibril orientations on
the scale of continuum. In particular, while there have been advances
in the theoretical mechanics of upscaling (e.g. Quintard and Whitaker,
1994; Cushman et al., 2002; Davit et al., 2013), whereby material
properties at the sub-continuum scale are systematically incorporated
into the constitutive relation of continuum models with controlled
accuracy, such approaches are generally not tractable for collagen
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networks and cartilage (Buehler, 2006; Klika et al., 2016). Hence, it is
currently not feasible to assess the impact of fibril-scale changes and
individual crosslinks in a continuum model. Thus one must instead
adopt a bottom-up approach and represent collagen fibrils individually;
furthermore elastic dominated constitutive relationships are indicated
for fibrils (Buehler, 2006) in contrast to entropic dominated models at
lower scales. An exemplar of such a model has already been explored by
Lee et al. (2014), who concentrate on elucidating the stress strain
relationship of material made from networks of collagen fibrils. In
contrast, here, our objective is to explore how crosslink properties and
densities within a collagen meshwork representing cartilage impact on
mechanical performance and structure, in particular fibril alignment as
it is a signature of cartilage pathology (Broom, 1982; Chen and Broom,
1998; Brown et al., 2012).

2. Methods

2.1. Collagen structure simulation

A 2-D model of collagen structure was implemented in C/C++. For
simplicity collagen fibrils were not represented as Euler-Bernoulli
filaments; instead each fibril was modelled as a series of 1-D springs
of length approximately 1 μm connected at nodes, via torque free pin
joints. Assuming a fibril diameter of 100 nm and a linear stress-strain
relation, the material property of the fibrils were calculated by fitting
experimental data from a single fibril tensile test (van der Rijt et al.,
2006) to give a force-strain relation of 4 μN/unit strain (equivalent to a
Young's modulus ≈500 MPa). Crosslinks were implemented with a
linear force-strain relation on the assumption of small deformation,
with parameters chosen a posteriori due to a lack of available data. It
should be noted that crosslinking in this model refers to inter-fibril
connectivity, and does not probe, for example, enzymatic or AGE-
related crosslinking (Buehler, 2006; Chen et al., 2002). Validation of
the fibril implementation was performed using a single fibril of length
20 μm (20 segments) under load in one dimension. Validation of
crosslink behaviour was similarly performed by linking two fibrils in
series. Each spring had the linear force-strain relation
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where L′ was the displaced length of the spring, L0 was the resting
length of the spring, F was force and k is the spring constant, a material
property. The error in the numerical solution, relative to the analytical
solution, was considered by calculating the spring length on reaching
equilibrium (ie. all spring movement was below a very small tolerance).
The accuracy of numerical solution was better than 99.9% (see
Table 1).

Thirty collagen meshwork configurations were constructed to
simulate the pseudo-random collagen microstructure observed in
electron micrographs (Teshima et al., 1995; Stolz et al., 2009; Broom
et al., 2001), with anisotropy and connectivity forming the Benninghoff
arcades (Benninghoff, 1925) at larger scales. A representative structure
is given in Fig. 1A. Each node, shown in yellow, is connected to two
neighbours on the same fibre by linear springs, shown in green. All
structures were based on 30 parallel sets of 24 springs, giving a total
length 24 μm, initially aligned with the y-axis and separated by 1 μm in
the x direction. Nodes were then randomly displaced in x direction

within ± 1 μm. Crosslinks (shown in red in Fig. 1) were incorporated
based on proximity of nodes from adjacent fibrils. Proximity thresholds
of 0.3 μm, 0.5 μm and 0.8 μm were applied to each structure, with a
linear stress-strain relation for the crosslink varied between 2 and
12 μN/unit strain. Once a crosslink formed in the model, it was not
allowed to break.

Uniaxial tensile loading, in the direction of predominant fibril
alignment, was applied as an exemplar to simplify the complex stress
environment of the tissue while capturing the tensile response of the
collagen meshwork to macroscale applied loads (Wilson et al., 2004;
Thambyah and Broom, 2006). In each simulation, the end nodes of
each fibril were fixed in the x-direction and subjected to a constant
tensile force of 0.5 μN in the y-direction. Node positions were time-
stepped according to a linear overdamping law. When the structure
reached equilibrium, the load was released and the structure allowed to
recover. Node positions were recorded at original, equilibrium and
recovered positions and passed to MATLAB (2015a, The MathWorks
Inc., Natick, USA) for analysis.

Strains and fibril organisations were calculated for each simulation.
Fibril strains in each structure were calculated based on the change in
distance between adjacent nodes. Bulk strains were calculated based on
the mean distance between the fibril end nodes. Organisation was
classified using an anisotropy parameter rmean based on polarised
optical parameters used for cartilage measurements (Houle et al.,
2015; Couture et al., 2015; Campagnola and Loew, 2003), providing a
means for comparison with experiments. In particular rmean is
defined by
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where N is total number of springs, δX δx δx= | − |i i i+1 , δY δy δy= | − |i i i+1
and δxi and δyi are the x and y positions of the ith node. Note for
instance that when r = 1mean , the fibrils are aligned in the direction of
loading.

3. Results

3.1. Effect of crosslink density

Representative microstructures before and after stretching (along
the y direction) and after relaxation are shown in Fig. 1. Qualitatively,
different numbers of crosslinks resulted in substantially different
configurations after loading. Highly-crosslinked microstructures main-
tained a ‘normal’ configuration with loading (Fig. 2A). Microstructures
with lower crosslink densities were more aligned with the direction of
loading, and formed fibre bundles (Fig. 2B) similar to those observed in
electron microscopy of osteoarthritic cartilage (Fig. 2C (Chen and
Broom, 1998)).

For a given structure and crosslinking threshold, the crosslink
density was inversely proportional to the anisotropy measure of the
pre-loaded meshwork structure (Fig. 3), with r > 0.92 (Pearson's
correlation coefficient).

Quantitative differences due to crosslink density were also ob-
served. Due to the random modification of node positions for each
microstructure, threshold distances for crosslinking produced a range
of crosslink densities in the structures. The reconfiguration of fibrils
under loading, quantified by the above anisotropy parameter rmean

(Eq. (2)) is presented in Fig. 4. At low crosslink densities, fibrils aligned
with the direction of load, with minimal recovery. At higher crosslink
densities, the microstructures resisted realignment (Fig. 4A) and
recovered their isotropy to a greater extent (Fig. 4C). The maximum
recovery of isotropy (% recovered rmean relative to rmean at equili-
brium), however, was only 35%.

For a fixed crosslink proximity threshold, bulk strain data clustered
into groups. Within these groups (i.e. black, green or blue dots in

Table 1
Numerical spring length error under one dimensional tensile test load for an isolated
spring segment (single spring) and a single, 20-segment spring (single fibril).

single spring single fibril

Spring resting length 1 μm 0.5 μm 1 μm 2 μm
Error(%) −0.006 −0.022 −0.003 −0.003
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