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a b s t r a c t

We present implementations of the numerical integration of systems with long-range interactions on
graphic processing units for three N-body models with long-range interactions of general interest: the
Hamiltonian Mean Field, Ring and two-dimensional self-gravitating models. We discuss the algorithms,
speedups and errors using one and two GPU units. Speedups can be as high as 140 compared to a serial
code, and the overall relative error in the total energy is of the same order of magnitude as for the CPU
code. The number of particles used in the tests range from 10,000 to 50,000,000 depending on themodel.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of systems with long-range interactions have
been intensively studied over the last two decades due to their
unusual and intriguing phenomenology, such as the existence
of quasi-stationary non-Gaussian states with diverging life times
with the number of particles, negative microcanonical heat ca-
pacity, inequivalence of ensembles and non-ergodicity [1–7]. Self-
gravitating systems [8], non-neutral plasmas [9,10] and models as
the Ring model [11,12] Hamiltonian Mean Field (HMF) [13], one-
dimensional gravity (infinite sheetswith uniformdensity) [14–16],
two-dimensional gravity (infinite uniform rods) [17], Free Electron
Laser [18] and plasma single wave models [19] are among many
examples of systemswith long-range forces. A pair potential inter-
action has a long-range if it scales for large distances as r−α with
α < d, r the interparticle distance and d the spatial dimension. This
slow decaying interparticle potential is responsible for the cou-
pling of distant components of the system in such a way that all
particles contribute to the dynamics of a given particle. For out of
equilibrium situations,many of these studies rely onMolecular Dy-
namics (MD) simulations, i. e. solving numerically the Hamiltonian
equations of motion for the N-particle system.

MD simulations have been extensively used to study many
properties of these systems from first principles. Some numeri-
cal parallel algorithms were implemented in the literature with
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applications ranging from condensed matter to astrophysics
[20–25]. The main computational effort relies on the computation
of forces among N particles of the system, which usually scales
as N2. For large N the simulation time can become too large so
somedifferent approacheswere introduced to simplify force calcu-
lations as the Particle-in-Cell [26], Particle–Mesh [27], hierarchical
trees [28] and particle–mesh [29]methods,whichwere also ported
to a GPU framework [30–37]. Another approach consists in s solv-
ing the Vlasov equation which describes the statistical properties
for the system in the limit of a large number of particles [38,39],
although finite N effects are lost in this case.

All particle force calculation are important for studying
phenomena where first principles implementations are necessary
to avoid spurious effects coming from different approximations,
and have also been implemented using GPU computing [40–42].
A review of all algorithms implemented on GPU for astronomical
systems is given in Ref. [43]. Ab initio MD codes with full particle
force evaluation have been central in many important advances in
the statistical mechanics of systems with long-range interactions
(see [1] and references therein), and their implementation in the
CUDA architecture [44] represented a leap forward as it allowed
much large simulation times and particle numbers with many
interesting results for the field [45–49]. Here we present a CUDA
implementation of the MD algorithms used in the latter works, on
both one and two GPUs to solve the corresponding Hamiltonian
equations of motion for models in the field of Statistical Mechanics
of systems with long-range interactions. The algorithms used can
be efficiently extended for any number of GPUs. The simulations
are performed without introducing any simplifying hypothesis
with computational effort scaling as N2. For some models the
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explicit form of the pair interaction potential allows further
simplifications with important reduction in computational time.
We take advantage of the peculiarities of eachmodel implemented
to exploit the GPUs capabilities. Themodels here considered are all
widely studied in the literature on long-range interacting systems.

The structure of the paper is the following: in Section 2 we de-
scribe the model systems studied in this paper. Section 3 presents
the main algorithms and how they are implemented in CUDA, and
in Section 4 we present the timings and speedups for the three
models taken as examples, and discuss the relative error in the
energy for each model. We close the paper with some conclud-
ing remarks in Section 5. In all these models the Kac factor 1/N
ensures that the energy is extensive (although not additive) [1].

2. Models with long-range interactions

Here we present some simplified models that are discussed in
the present work. The Ring model is composed of N particles with
unitmass on a ring of radius R and interacting though a regularized
gravitational potential with Hamiltonian [11,12]:

H =
1
2
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1
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, (1)

with ϵ a softening parameter introduced to avoid the divergence
at zero distance and θi denotes the position angle of a particle on
the circle. By considering the limit for large values of the param-
eter ϵ we obtain the Hamiltonian Mean Field (HMF) model with
Hamiltonian [13]:
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The two-dimensional self-gravitating particles is composed of
identical particles with unit mass. By solving the Poisson equation
in two dimensions we obtain the Hamiltonian [17]:
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here px,i, py,i, xi and yi are the x and y components of themomentum
and the coordinates for the ith particle, respectively, and ϵ is again
a (small) parameter used to avoid the divergence of the potential
at zero distance.

3. Algorithms and CUDA implementation

The standard integration method for the numerical solution
of Hamilton equations for the model systems described in the
previous section is a fourth-order symplectic integrator [50].
Each time step requires three force calculations, being the most
demanding step. All computations are fully performedon theGPUs.
Once the force Fi on each particle is determined, the integration
steps consist of a succession of velocityvi → v+ξ∆tFi andposition
ri → ri+χ∆tvi increments, where vi and ri stand for the velocities
and position components of particle i, respectively, and ξ and χ

are given constants specified by the integrator [50]. These steps
are trivially parallelized, so we turn to present the specific CUDA
implementation to compute the force for each case model taking
advantage of its explicit form.

3.1. HMF model

From the Hamiltonian in Eq. (2) the potential energy and the
force on particle i can be written respectively as

V =
N
2


1 − M2

x − M2
y


, (4)

and

fi = cos(θi)My − sin(θi)Mx, (5)

where the components of the ‘‘magnetization’’ are given by

Mx =
1
N

N
i=1

cos(θi), My =
1
N

N
i=1

sin(θi). (6)

We note that due to the form of the interaction potential the sym-
plectic integration time for the HMF scales with N in contrast to
the usual N2 scaling for the other two models. The most demand-
ing part of an integration step is the computation of the sine and
cosine of the position angles for each particle. For the force in
Eq. (5) each term cos(θi) and sin(θi) is used twice: to compute Mx
andMy and to obtain the force on each particle from expression (5).
To avoid redundant computations their values are first computed
and stored in an array in the GPU global memory taking care to en-
sure coalesced memory access, which is an important issue in any
CUDA implementation. A CUDA kernel is composed of blocks each
with a given number of threads. Each thread in a block computes
the value of the cosine and sine of a given particle and the cor-
responding values are also stored in shared memory. A reduction
procedure is then used to compute the values of Mx and My and
the force is obtained using the precomputed values of sin(θi) and
cos(θi). The potential energy is trivially obtained from Eq. (4) and
the kinetic energy is efficiently computed using a straightforward
reduction procedure.

For twoGPUs half of particle data (position,momenta and force)
is stored in each GPU which then computes the magnetization
components for its corresponding number of particles, and their
sum give the total magnetization components. The forces on each
particle are the trivially computed for the particles on each GPU,
and the subsequent evolution is also performed independently by
each GPU for its set of particles.

3.2. Ring model and self-gravitating 2D system

The computational time for symplectic integration of the Ring
model scales as N2. Here we follow a strategy similar to the
one described in Ref. [42] based on a decomposition of the force
calculation in tiles as depicted in Fig. 1. The force on particle i is
obtained from Hamiltonian (1) as:

fi =


j

fij, fij =
1

2
√
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3/2 . (7)

This last expression can be rewritten as

fij =
1

2
√
2N

sin θi cos θj − cos θi sin θj
1 − cos θi cos θj − sin θi sin θj + ϵ

3/2 . (8)

Each sin θi and cos θi for i = 0, . . . ,N is computed and stored
in global memory in order to avoid computing twice their values.
Each tile has Nthreads (the number of threads in a block) particles in
the horizontal direction (index i in Fig. 1) andNthreads in the vertical
direction (index j). The total number of tiles in eachdirection is thus
Ntiles = N/Nthreads. The algorithm can be expressed as:

1. Store fk = 0 and the values of sin θk and cos θk, k = lNthreads,
. . . , (l + 1)Nthreads − 1 in shared memory, with l the block
number, and synchronize threads in the block.
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