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a b s t r a c t

A number of stochastic methods developed for the calculation of fermion loops are investigated and
compared, in particular with respect to their efficiency when implemented on Graphics Processing Units
(GPUs). We assess the performance of the various methods by studying the convergence and statistical
accuracy obtained for observables that require a large number of stochastic noise vectors, such as the
isoscalar nucleon axial charge. The various methods are also examined for the evaluation of sigma-terms
where noise reduction techniques specific to the twisted mass formulation can be utilized thus reducing
the required number of stochastic noise vectors.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The evaluation of disconnected quark loops is of paramount
importance in order to eliminate a systematic error inherent in
the determination of hadron matrix elements in lattice QCD. For
flavor singlet quantities, these contributions, even though smaller
in magnitude as compared to the connected contributions that are
computationally easier to evaluate, are substantial and cannot be
neglected. The explanation of why these quark loop contributions
are large for flavor singlet quantities is the fact that, in a flavor
singlet, the disconnected contributions coming from different
flavors addup, andhence there is no a priori reason toneglect them.
Naive perturbative calculations of some of these flavor singlet
contributions differ from their experimental value, which suggests
that flavor singlet phenomena are inherently linked with non-
perturbative properties of the vacuum. A good example to support
this point is the axial anomaly in the case of the η′ mass, which
is connected to the topological properties and non-perturbative
nature of QCD.

The computation of disconnected quark loops within the lattice
QCD formulation requires the calculation of all-to-all or time-slice-
to-all propagators, which are impractical to compute exactly, and
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for which the computational resources required to estimate them
with, e.g. stochastic methods, are much larger than those required
for the corresponding connected contributions. Therefore, in most
hadron studies up to now the disconnected contributions were
neglected introducing an uncontrolled systematic uncertainty.

Recent progress in algorithms, however, combined with the
increase in computational power, have made such calculations
feasible. On the algorithmic side, a number of improvements
like the one-end trick [1–3], dilution [4–8], the Truncated Solver
Method (TSM) [8–10] and the Hopping Parameter Expansion
(HPE) [1,11] have led to a significant reduction in both stochastic
and gauge noise associated with the evaluation of disconnected
quark loops.Moreover, using special properties of the twistedmass
fermion Lagrangian, one can further enhance the signal-to-noise
ratio by taking the appropriate combination of flavors. On the
hardware side, graphics cards (GPUs) can provide a large speed-
up in the evaluation of quark propagators and contractions. In
particular, for the TSM,which relies on a largenumber of inversions
of the Dirac matrix in single or half precision, GPUs provide an
optimal platform.

In this paper, our aim is to assess recently developed
methods and examine how reliably one can compute disconnected
contributions to flavor singlet quantities by combining the
algorithmic advances with the numerical power of GPUs. We will
describe the various improvements using one ensemble of twisted
mass fermion (TMF) gauge field configurations. The ensemble is
generated with two light degenerate quarks and a strange and
charm quark withmasses fixed to their physical values, referred to

0010-4655/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2014.01.009

http://dx.doi.org/10.1016/j.cpc.2014.01.009
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.01.009&domain=pdf
mailto:alexand@ucy.ac.cy
http://dx.doi.org/10.1016/j.cpc.2014.01.009


C. Alexandrou et al. / Computer Physics Communications 185 (2014) 1370–1382 1371

asNf = 2+1+1 simulations. The lattice size is 323
×64, the lattice

spacing extracted from the nucleon mass [12] a = 0.082(1)(4)
and pion mass about 370 MeV. This ensemble will be hereafter
referred to as the B55.32 ensemble. This paper intends to describe
themethodology and identify the efficiency of the variousmethods
with respect to the observable under investigation, rather than
to arrive at precise physical results. The latter we reserve for a
follow-up publication. Although we will use the nucleon to test
our methodology the conclusions apply to any hadron. The paper
is organized as follows: in Section 2 we present the algorithms
and variance reduction techniques we will employ. In Section 3
we explain our particular formulation, including information on
the gauge configurations used, as well as details on the GPU
implementation of our methods. Section 4 explains our analysis to
extract the desiredmatrix elements, followedby Section 5 inwhich
we summarize the comparisons between the different methods
employed. In Section 6 we give our conclusions and outlook.

2. Methods for disconnected calculations

2.1. Stochastic estimate

The exact computation of all-to-all (time-slice-to-all) propaga-
tors on a lattice volume of physical interest is outside our current
computer power, since thiswould require volume (spatial volume)
times inversions of the Dirac matrix, whose size ranges from ∼107

for a 243
× 48 lattice to ∼109 for the largest volumes of 963

× 192
considered nowadays. The typical way around this problem is to
compute an unbiased stochastic estimate of the all-to-all propa-
gator [13]. The method consists of generating a set of Nr sources
|ηr⟩ randomly, by filling each component of the source with ran-
dom numbers drawn from a particular representation of the Z2
or Z4 groups (more exactly {1,−1} for Z2 and {1, i,−1,−i} for
Z4), or from a representation of Z2 ⊗ iZ2. Other noise sets may be
used, however it has been shown that ZN -noise has smaller vari-
ance than e.g. Gaussian noise [14]. The ZN -noise sources have the
following properties:
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The first property ensures that our estimate of the propagator is
unbiased. The second one allows us to reconstruct the inverse
matrix by solving for |sr⟩ in

M |sr⟩ = |ηr⟩ (3)

and calculating

M−1
E :=

1
Nr

Nr
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|sr⟩ ⟨ηr | ≈ M−1. (4)

Since in general the number of noise vectors Nr required is much
smaller than the lattice volume V , the computation becomes
feasible, although it can still be very expensive depending on the
value of Nr required to achieve a good estimate ofM−1 in Eq. (4).

The deviation of our estimator from the exact solution is given
by
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so as Nr increases the introduced stochastic error decreases, as
Eq. (2) clearly shows. In fact, from Eqs. (2), (5) we see that the

errors decrease as O


1
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
, as expected from the properties of

these noise sources.
Since we have to deal with gauge error, i.e. the error coming

from the fact that we analyze a representative set of gauge
configurations, the number of stochastic noise sources should be
taken so that the stochastic error is comparable to the gauge
error. This criterion ideally determines the number of stochastic
sources Nr , which can differ for each observable. Since we will be
interested in evaluating a range of observables we will choose Nr
that can yield good results for the most demanding among these
observables.

2.2. The Truncated Solver Method

The Truncated Solver Method (TSM) [8–10] is a way to increase
Nr at a reduced computational cost. The idea behind the method is
the following: instead of inverting to high precision the stochastic
sources in Eq. (3), we can aim at a low precision (LP) estimate

|sr⟩LP =

M−1

LP |ηr⟩ , (6)
where the inverter, which is a Conjugate Gradient (CG) solver
in this work, is truncated. The truncation criterion can be a low
precision stop condition for the residual (for instance, |r̂| < 10−2,
with r̂ the residual vector in the CG algorithm), or a fixed number
of iterations, roughly around 1/10 or 1/20 ofwhatwould be needed
to obtain a high precision (HP) solution. This way we can increase
the number of stochastic sources NLP at a very small cost. Using
the low precision sources our estimate of the inverse matrix given
by Eq. (4) is not unbiased, so we are introducing new errors in the
computation of the all-to-all propagator.

In order to correct for the bias introduced using low precision,
we estimate the correction CE to this bias stochastically by
inverting a number of sources to high and low precision, and
calculating the difference,

CE :=
1

NHP
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where the |sr⟩HP are calculated by solving Eq. (3) up to high
precision, so our final estimate becomes
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which requires NHP high precision inversions and NHP + NLP low
precision inversions. Following the discussion in Ref. [15], one
expects the error of this improved estimate of the fermion loop to
scale as:

e


2(1 − rc)+

1
nLP
, (9)

where the unimproved error e scales as ∝ 1/
√
NHP and nLP =

NLP/NHP. rc is the correlation between the NHP quark propagators
in low and high precision, which is expected to be close to unity
(with the optimal being one) and depends on the criterion for
the LP inversions and on how well-conditioned the Dirac fermion
matrix is. In this work, we use the twisted mass formulation for
the fermion action, hence the smallest eigenvalues depend on the
value of the twistedmass parameterµ, and ourmatrix is protected
from near-zero eigenvalues.

In the TSM one needs to tune the precision of the LP inversions
as well as the nLP ratio, with the goal of choosing as large a ratio as
possible while still ensuring that the final result is unbiased and
that rc ≃ 1. In the next subsection we give details on how we
optimized the TSM parameters with this criterion in mind.
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