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a b s t r a c t

Methods are presented that allow for the automatic increase and preservation of symmetry during global
optimization of crystal structures. This systematic building of symmetry allows for its incorporation into
structure prediction simulations evenwhen the space group information is not known a priori. It is shown
that simulations that build and maintain symmetry converge much more rapidly to ground state crystal
structures than when symmetry is ignored, allowing for the treatment of unit cells much larger than
would otherwise be possible, especially when beginning from the P1 space group.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There is a distinct relation between the physical properties of a
material and its atomic structure. For example, graphitic carbon is
an electrical conductor that is very soft whereas diamond, despite
having the same composition, is an insulator that is extremely hard
[1,2]. With the possibility of such wildly different properties even
within a given chemical composition, accurate crystal structures
are vital to the study of materials. While there exist large
databases of known crystal structures [3–5], many compounds
have either incomplete entries or are missing entirely. In an
effort to solve these unknown structures, many successful global
optimizationmethods have been developed [6–17]. However, in an
unconstrained search, the number of degrees of freedom thatmust
be optimized increases as three times the number of atoms that are
included, making the unconstrained prediction of structures with
large unit cells difficult or practically impossible.

Of roughly 130,000 structures that are currently in the Inorganic
Crystal Structure Database (ICSD) [3], only slightly more than 5000
belong to the P1 space group. The other 96% of structures are of
higher symmetry, which puts constraints on the cell shape, atomic
coordinates, or both. Leveraging crystal symmetry is therefore a
potentially powerful and widely applicable method that can be
used to significantly reduce the number of degrees of freedom that
must be treated. A number of structure prediction methods have
been developed that use symmetry to improve the efficiency of the

∗ Corresponding author.
E-mail addresses: kylemichel@gmail.com (K.J. Michel),

c-wolverton@northwestern.edu (C. Wolverton).

optimization [14,12,16,13,17]. However, in general, they require
that the space group symmetry be known a priori.

Here, we outline a strategy that leverages symmetry to reduce
the complexity of the optimization while starting from structures
that are in the P1 space group. The main points underlying our
approach can be divided into two categories, which are described
in more detail throughout this paper: first, is symmetry building
where in a structure is refined under symmetry operations that are
nearly, but not exactly satisfied so that the symmetry is increased
on-the-fly during a simulation; second, the preservation of these
symmetrieswhen generating new structures to reduce the number
of free variables and increase the efficiency of the search. As an
illustration of our approach, we show the ways in which these
steps can be incorporated intoMonte Carlo-based crystal structure
prediction. However, we emphasize that the application of these
methods is not restricted toMonte Carlo simulations, but that they
can be generalized to other global optimization methods as well.
We show that simulations that build and leverage symmetry using
these methods converge much more rapidly than those in which
symmetry is ignored entirely, allowing for the treatment of larger
unit cells than would otherwise be possible.

2. Methods

2.1. Structure refinement

The first step in the symmetry-building routine is structure
refinement, which represents the key step of the method since
it allows structures to move from low symmetry space groups to
ones with higher symmetry in a meaningful way. The process of
increasing symmetry is accomplished by searching for symmetry
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operations using a wide tolerance, which is defined such that two
atomic positions are taken to be equal under an operation if the
distance between them is less than this value (0.5 Å is used in all
simulations). The larger this tolerance is made, the more likely it is
that symmetry operations will be found in a structure. Refinement
is the process of adjusting the basis vectors and atomic positions
so that they exactly satisfy the symmetries that were discovered,
the details of which are described in the following paragraphs.

Addressing first the refinement of the unit cell parameters,
restraints on the basis vectors imposed by a set of symmetry
operations are easily described by their effect on themetric matrix
[18]:

G =

a · a a · b a · c
a · b b · b b · c
a · c b · c c · c


(1)

where a, b, and c are the unit cell basis vectors. A symmetry
operation Wi consists of a rotation, Ri, and a translation ti so that
the coordinates of an atom j transformas x′

j = Rixj+ti. Under every
rotational part of the symmetry operations, themetricmatrixmust
remain unchanged, which can be expressed as

RT
i GRi − G = 0. (2)

Eq. (2) defines nine equations, each a linear function of one of the
nine elements of G. Since Eq. (2) must be satisfied for every one
of the Nsym symmetry operations that are found, there are in total
9Nsym simultaneous equations that constrain the metric matrix.
Following the procedure described in Ref. [18], we take advantage
of the fact that G is symmetric to reduce the constraints to 6Nsym
equations, each a function of one of the unique elements of G. The
system of equations can be written in the matrix–vector form as

C


a · a
b · b
c · c
a · b
a · c
b · c

 = 0 (3)

where C is a 6Nsym × 6 matrix. The column vector in Eq. (3) is
initialized with the metric matrix values of the structure that has
yet to be refined. C is then row-reduced and the refined values of
a · a, b · b, etc. are obtained from back-substitution, after which it
is straightforward to solve for the refined lengths of a, b, and c and
the angles between them.

The second step of refinement is the modification of positions
of the atoms in the unit cell. For each of the symmetrically unique
atoms the structure, its special position operator is constructed
according to [19]

Sj =
1

Nsym
j

Nsym
j
i

Wi (4)

where Nsym
j is the number of site symmetry operations for atom j;

that is, those operations that satisfy xj = Rixj + ti. Applying the
special position operator for the atom to its unrefined coordinates
moves the atom onto its high symmetry site. In other words, the
application of the special position operator has the same effect as
applying all site symmetry operations to the atom and averaging
over the resulting positions. All symmetry operations of the crystal
are then applied to this refined coordinate in order to generate the
orbit of symmetrically equivalent atoms.

After refinement of the basis vectors and atomic coordinates,
the structure will exactly satisfy the symmetry operations that
were only approximate to some wide tolerance. As an example
of its effect, a disordered NaCl structure is shown in Fig. 1(a),

Fig. 1. Example of the refinement operator acting to increase the symmetry of a
structure. The structure in (a) was generated by taking the conventional cell of the
rock salt structure and adding a random vector of length 0.4 Å to each of the atomic
positions and lattice vectors. The structure in (b) was generated from (a) using the
refinement operator with symmetries obtained using a tolerance of 0.8 Å.

which was obtained from the perfect NaCl crystal structure by
adding vectors of length 0.4 Å with random orientations to each
of the atomic positions and basis vectors. Fig. 1(b) shows the same
structure, but following application of the refinement operator. In
this case, the refinement recovers the full symmetry of the original,
unperturbed NaCl structure.

2.2. Preservation of symmetry

The increased symmetry that results from refinement reduces
the number of free variables in the simulation, making the opti-
mization more efficient as long as the symmetries are maintained
during subsequent changes to the structure. In the following, the
ways in which the symmetry is preserved under changes made to
the unit cell vectors and internal atomic coordinates are discussed,
where the latter occurs via simple displacements as well as swaps
of atoms.

Using the same methods that were implemented in structure
refinement, it is straightforward to make changes to the unit cell
vectors that maintain symmetry. In practice, this is accomplished
by adding random vectors to each of the basis vectors, making the
cell triclinic regardless of its starting symmetry. The metric matrix
(Eq. (1)) is formed for this modified cell and then refined so that it
satisfies any constraints imposed by the current set of symmetries.
The new cell is taken as the one resulting from this symmetrized
metric matrix.

Symmetry-preserving atomic displacements are made using
the special position operators of the atoms (Eq. (4)). It can be
shown that the rotational part of the special position operator is
a projection matrix; that it satisfies Pj · Pj = Pj, where

Pj =
1

Nsym
j

Nsym
j
i

Ri (5)
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