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Some explicit algorithms for higher order symplectic integration of a large class of Hamilton’s equations
have recently been discussed by Mushtaq et al. Here we present a Python program for automatic numer-
ical implementation of these algorithms for a given Hamiltonian, both for double precision and multi-
precision computations. We provide examples of how to use this program, and illustrate behavior of both
the code generator and the generated solver module(s).

Program summary

Program title: HOMsPy: Higher Order (Symplectic) Methods in Python

Catalogue identifier: AESD_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESD_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 19423

No. of bytes in distributed program, including test data, etc.: 1970283

Distribution format: tar.gz

Programming language: Python 2.7.

Computer: PCs or higher performance computers.

Operating system: Linux, MacOS, MSWindows.

RAM: Kilobytes to a several gigabytes (problem dependent).

Classification: 4.3, 5.

External routines: SymPy library [1] for generating the code. NumPy library [2], and optionally mpmath
[3] library for running the generated code. The matplotlib [4] library for plotting results.

Nature of problem:

We have developed algorithms [5] for numerical solution of Hamilton’s equations.

¢" = 0H(q,p)/dp,a,  po= —0H(q.p)/9q", a=1...N (1)
for Hamiltonians of the form
H(q.p) =T(p) + V(q) = (1/2)p'Mp + V(q), (2)

with M a symmetric positive definite matrix. The algorithms preserve the symplectic property of the time
evolution exactly, and are of orders TV (for2 < N < 8)in the timestep 7. Although explicit, the algorithms
are time-consuming and error-prone to implement numerically by hand, in particular for larger N.

* This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/

science/journal/00104655).
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Solution method:
We use computer algebra to perform all analytic calculations required for a specific model, and to generate
the Python code for numerical solution of this model, including example programs using that code.

Restrictions:
In our implementation the mass matrix is assumed to be equal to the unit matrix, and V (q) must be suf-
ficiently differentiable.

Running time:
Subseconds to eons (problem dependent). See discussion in the main article.
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1. Introduction

The Hamilton equations of motion (1) play an important role in
physics and mathematics. They often require numerical methods
to compute a solution [ 1-3]. A well-behaved class of such methods
are the symplectic solvers, which preserve symplecticity of the time
evolution exactly. One simple way to construct a symplectic solver
is to split the time evolutions into kicks,

. , av(q)

" =0, Pa = — g ) (3)

which is straightforward to integrate to give

q‘(t+7) = q'(0), (4)
av(q(t))

Pa(t +7) = pa(t) — T—- 5)

aq

followed by moves,

. aT(p) ,

i = => M®py,  pa=0. (6)

9Pa P’
The final scheme can be written as

Q(t+1)=q"O+7 Y MPpy(t + 1),
b

av(q(1))
gt

This scheme was already introduced by Newton [4] (as more ac-
cessible explained by Feynman [5]). A symmetric scheme can be
constructed by performing a kick of size %r, a move of size 7, and
a kick of size %r (and repeating). This is often referred to as the
Stormer-Verlet method [6,7]; it has a local error of order 3. The
solution provided by this method can be viewed as the exact solu-
tion of a slightly different Hamiltonian system, with a Hamiltonian
Hgy which differ from (2) by a term proportional to 72, For this rea-
son the scheme respects long-time conservation of energy to order
72, It will also exactly preserve conservation laws due to Nother
symmetries which are common to T(p) = %pTMp and V(q), like
momentum and angular momentum which are often preserved in
physical models [8].

Pa(t + 1) =pa(t) — 7

Recently Mushtaq et al. [9,10] proposed some higher order
extensions of the Stormer-Verlet scheme. These extensions are also
based on the kick-move-kick idea, but with modified Hamiltonians,

1
Hi=Ter = Sp'Mp+ ) Tu(q.p). (7a)
k>1
Hy = Verr = V(@) + ) Va(@), (7b)
k>1

where Ty and Vs, are proportional to 7. Le., the proposal is to
replace V(q) in Eq. (3) by Verr(q), and T(p) in Eq. (6) by Terr(q, p)-
The goal is to construct Veg and Tegr such that the combined kick-
move-kick process corresponds to an evolution by a Hamiltonian
H.¢ which lies closer to the Hamiltonian H of Eq. (2). The difference
being of order 2V+2 when summing terms up to k = N in Egs. (7).

One problem with this approach is that Teg in general will de-
pend on both g and p; hence the move-steps of Eq. (6) can no longer
be integrated explicitly. To overcome this problem we introduce a
generating function [3]

G(q,P; 1) =) Gi(g,P)7* 8)
k>0
such that the transformation (q, p) — (Q, P) defined by
G
Da = TqG, (9a)
le
“o_ 9b
Q ap, (9b)

preserves the symplectic structure exactly, and reproduce the time
evolution generated by Tes; to order T, Here Q¢ is shorthand for
q“(t + 1), and P, shorthand for p,(t 4+ 7). Eq. (9a) is implicit and in
general nonlinear, but the nonlinearity is of order 73 (hence small
for practical values of 7). In the numerical code we solve (9a) by
straightforward iteration (typically two to four iterations in the ex-
amples we have investigated).

The rest of this paper is organized as follows: In Section 2 we
introduce compact notation in which we present the general ex-
plicit expressions for Teg(q, p), Vesr(q), and G(q, Q). Because of
their compactness these expressions are straightforward to imple-
ment in SymPy.

In Section 3 we provide examples of how to use the code gen-
erator on specific problems. This process proceeds through two
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