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a b s t r a c t

Some explicit algorithms for higher order symplectic integration of a large class of Hamilton’s equations
have recently been discussed by Mushtaq et al. Here we present a Python program for automatic numer-
ical implementation of these algorithms for a given Hamiltonian, both for double precision and multi-
precision computations. We provide examples of how to use this program, and illustrate behavior of both
the code generator and the generated solver module(s).

Program summary

Program title: HOMsPy: Higher Order (Symplectic) Methods in Python

Catalogue identifier: AESD_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESD_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 19423

No. of bytes in distributed program, including test data, etc.: 1970283

Distribution format: tar.gz

Programming language: Python 2.7.

Computer: PCs or higher performance computers.

Operating system: Linux, MacOS, MSWindows.

RAM: Kilobytes to a several gigabytes (problem dependent).

Classification: 4.3, 5.

External routines: SymPy library [1] for generating the code. NumPy library [2], and optionally mpmath
[3] library for running the generated code. The matplotlib [4] library for plotting results.

Nature of problem:
We have developed algorithms [5] for numerical solution of Hamilton’s equations.

q̇a = ∂H(q, p)/∂paa, ṗa = −∂H(q, p)/∂qa, a = 1 . . .N (1)

for Hamiltonians of the form

H(q, p) = T (p) + V (q) = (1/2)pTMp + V (q), (2)

withM a symmetric positive definitematrix. The algorithms preserve the symplectic property of the time
evolution exactly, and are of orders τN (for 2 ≤ N ≤ 8) in the timestep τ . Although explicit, the algorithms
are time-consuming and error-prone to implement numerically by hand, in particular for larger N .

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Solution method:
Weuse computer algebra to performall analytic calculations required for a specificmodel, and to generate
the Python code for numerical solution of this model, including example programs using that code.
Restrictions:
In our implementation the mass matrix is assumed to be equal to the unit matrix, and V (q) must be suf-
ficiently differentiable.
Running time:
Subseconds to eons (problem dependent). See discussion in the main article.
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1. Introduction

The Hamilton equations of motion (1) play an important role in
physics and mathematics. They often require numerical methods
to compute a solution [1–3]. A well-behaved class of suchmethods
are the symplectic solvers, which preserve symplecticity of the time
evolution exactly. One simple way to construct a symplectic solver
is to split the time evolutions into kicks,

q̇a = 0, ṗa = −
∂V (q)
∂qa

, (3)

which is straightforward to integrate to give

qa(t + τ) = qa(t), (4)

pa(t + τ) = pa(t) − τ
∂V (q(t))

∂qa
, (5)

followed bymoves,

q̇a =
∂T (p)
∂pa

=


b

Mabpb, ṗa = 0. (6)

The final scheme can be written as

qa(t + τ) = qa(t) + τ

b

Mabpb(t + τ),

pa(t + τ) = pa(t) − τ
∂V (q(t))

∂qa
.

This scheme was already introduced by Newton [4] (as more ac-
cessible explained by Feynman [5]). A symmetric scheme can be
constructed by performing a kick of size 1

2τ , a move of size τ , and
a kick of size 1

2τ (and repeating). This is often referred to as the
Störmer–Verlet method [6,7]; it has a local error of order τ 3. The
solution provided by this method can be viewed as the exact solu-
tion of a slightly different Hamiltonian system, with a Hamiltonian
HSV which differ from (2) by a term proportional to τ 2. For this rea-
son the scheme respects long-time conservation of energy to order
τ 2. It will also exactly preserve conservation laws due to Nöther
symmetries which are common to T (p) =

1
2p

TMp and V (q), like
momentum and angular momentum which are often preserved in
physical models [8].

Recently Mushtaq et al. [9,10] proposed some higher order
extensions of the Störmer-Verlet scheme. These extensions are also
based on the kick–move–kick idea, butwithmodifiedHamiltonians,

H1 ≡ Teff =
1
2
pTMp +


k≥1

T2k(q, p), (7a)

H2 ≡ Veff = V (q) +


k≥1

V2k(q), (7b)

where T2k and V2k are proportional to τ 2k. I.e., the proposal is to
replace V (q) in Eq. (3) by Veff(q), and T (p) in Eq. (6) by Teff(q, p).
The goal is to construct Veff and Teff such that the combined kick–
move–kick process corresponds to an evolution by a Hamiltonian
Heff which lies closer to the HamiltonianH of Eq. (2). The difference
being of order τ 2N+2 when summing terms up to k = N in Eqs. (7).

One problem with this approach is that Teff in general will de-
pend on both q and p; hence themove-steps of Eq. (6) can no longer
be integrated explicitly. To overcome this problem we introduce a
generating function [3]

G(q, P; τ) =


k≥0

Gk(q, P) τ k (8)

such that the transformation (q, p) → (Q , P) defined by

pa =
∂G
∂qa

, (9a)

Q a
=

∂G
∂Pa

, (9b)

preserves the symplectic structure exactly, and reproduce the time
evolution generated by Teff to order τN . Here Q a is shorthand for
qa(t + τ), and Pa shorthand for pa(t + τ). Eq. (9a) is implicit and in
general nonlinear, but the nonlinearity is of order τ 3 (hence small
for practical values of τ ). In the numerical code we solve (9a) by
straightforward iteration (typically two to four iterations in the ex-
amples we have investigated).

The rest of this paper is organized as follows: In Section 2 we
introduce compact notation in which we present the general ex-
plicit expressions for Teff(q, p), Veff(q), and G(q,Q ). Because of
their compactness these expressions are straightforward to imple-
ment in SymPy.

In Section 3 we provide examples of how to use the code gen-
erator on specific problems. This process proceeds through two
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