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a b s t r a c t

The reduction of a large number of scalar integrals to a small set ofmaster integrals via Laporta’s algorithm
is common practice in multi-loop calculations. It is also a major bottleneck in terms of running time and
memory consumption. It involves solving a large set of linear equations where many of the equations are
linearly dependent. We propose a simple algorithm that eliminates all linearly dependent equations from
a given system, reducing the time and space requirements of a subsequent run of Laporta’s algorithm.
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1. Introduction

In multi-loop calculations, one often finds that the expression
for a given Feynman diagram, after tensor decomposition, is given
in terms of a very large number of integrals of the form

I(ν1, . . . , νn) =


ddk1 · · · ddkl

1
Dν1
1 · · ·D

νn
n

. (1)
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Here, νi ∈ Z are called the indices of a given integral. The Di are
polynomials of total degree 2 in the loop momenta ki and any ex-
ternalmomenta andmasses. Integralswith different indices satisfy
a set of linear relations, and it is desirable to express a diagram us-
ing a minimal set of linearly independent integrals, the so-called
master integrals.

One source of linear equations relating different integrals are
the Integration-By-Parts (IBP) identities of [1,2]. They are a conse-
quence of translational invariance of the integral. Additional rela-
tions are obtained from Lorentz invariance (LI) [3]. Both IBP and
LI equations relate an integral with indices {νi} to integrals where
some of the {νi} are shifted. The coefficients are multivariate poly-
nomials of total degree atmost 1 in scalar products of external mo-
menta, squared masses, and the space–time dimension d.

Laporta [4] has given an algorithm that systematically solves
IBP and LI identities to reduce a given set of integrals to a linearly
independent set. Underlying the algorithm is the observation that
allowing larger indices, the number of integrals grows slower than
the number of IBP and LI identities relating these integrals with
each other. At some point, the rank r of the system is sufficiently
large that all integrals within a certain range of indices can be
reduced to a small number of master integrals.

Laporta’s algorithm proceeds by defining an order on the set of
integrals that corresponds roughly to the difficulty of calculating
them. In each step of the algorithm, one equation is solved for
the most ‘‘difficult’’ integral, and the equations solved in earlier
steps are inserted. Finally, all integrals are expressed through a
set of ‘‘simple’’ master integrals. The algorithm has become a
standard procedure in higher order calculations, and several public
implementations [5–9] are available.

There are two inconveniences that cause Laporta’s algorithm to
be resource hungry. One is intermediate expression swell: starting
with polynomial coefficients of low degree, the process of solving
and substituting leads to equations over rational functions of high
degree, and with large coefficients. Intermediate expressions are
usually much larger than the final answer and can challenge the
availablememory anddisk space. In order tomitigate the growth of
coefficients andminimize thememory usage, the intermediate ex-
pressions are regularly simplified, so that the overall running time
of the algorithm is dominated bymultivariate gcd calculations and
rational function simplification.

This build-up of large intermediate expressions is amplified by
the second problem: the number of IBP and LI equations relating a
given set of integrals is much larger than their rank, the number of
equations that are linearly independent. Consequently, much time
is spent processing redundant information, effectively calculating
a lot of zeros. Eliminating the redundancy in the linear system has
the potential to reduce the demands on CPU time and memory.

The problem of identifying linearly dependent equations be-
forehand has seen some investigation. For instance, Lee [10] gives
selection criteria based on the group structure of the IBP and LI
identities. We follow a different approach and propose an algo-
rithm that detects linear dependencies in a given set of IBP and
LI equations, thus reducing the time and space requirements of a
subsequent run of Laporta’s algorithm. Our algorithm is random-
ized in theMonte Carlo sense, i.e., it has deterministic running time
and gives the correct answer with high probability.

2. The algorithm

We now present an algorithm that removes any redundant
equations from a system of linear equations with multivariate
polynomial coefficients. In the case of Laporta’s algorithm, this can
drastically reduce the size of the system, and thus the required CPU
time and memory.

The basic idea is this: writing the system in matrix form,
where each column corresponds to one integral and each row to
a linear relationship between integrals, and solving by Gaussian
elimination would reduce linearly dependent rows to zero during
the forward elimination, allowing the identification and removal of
redundant equations. But there would be no gain: determining the
minimal set of equations would require the solution of the whole
system in the first place.

However, the cost of Gaussian elimination can be reduced by
mapping the coefficients homomorphically to a simpler domain.
As long as the homomorphism does not reduce the rank of the
system, one can still read off which equations are redundant. We
follow the canonical choice of usingFp, the field of integer numbers
modulo a prime p. In this way, the Gauss algorithm does not suffer
from intermediate expression swell, and no gcd calculations are
necessary.1

Algorithm 1 Get a maximal linearly independent subset of a given
system of linear equations over Z[x1, . . . , xs].
Input: A, an n×m matrix over Z[x1, . . . , xs].
Output: B, an r×m submatrix ofAwith linearly independent rows,

where r ≤ rank A. With high probability, r = rank A.

1: p← a large prime number
2: A′ ← Amod p ∈


Fp[x1, . . . , xs]

n×m
◃ Take the residue mod p of every coefficient of every

polynomial.
3: a1, . . . , as ← random points from Fp
4: A′′ ← A′(a1, . . . , as) ∈ Fn×m

p
◃ Evaluate every entry of A′
at the point (x1 = a1, . . . , xs = as) mod p.

5: Perform forward Gauss elimination on A′′. Before each step,
perform a row permutation to get a non-zero pivot element.
Let I = {i1, . . . , in} be the resulting permutation of rows, and
r the number of non-zero rows after Gaussian elimination (i.e.,
the rank of A′′).

6: B← the matrix consisting of rows i1, . . . , ir of A

The resulting algorithm is depicted in Algorithm 1. The opera-
tion of taking the modulus of A in step 2 is meant to be element-
wise: we take the modulus of each coefficient of each polynomial
in the matrix. Likewise, the evaluation of the matrix in step 4 is
meant as an evaluation (within Fp) of every polynomial.

It should be noted that in addition to identifying a maximal
linearly independent set of equations, the algorithm also identifies
the master integrals: any column that does not contain a pivot
element corresponds to an integral that cannot be reduced with
the given set of equations. Of these, some will be integrals with
large indices that could be solved with additional equations, and
the others will be the master integrals.

2.1. Simple example

In order to illustrate the algorithm, we give a simple example.
Consider

A =


x x+ y 1 0
5x 3y 0 x
−4x x− 2y 1 −x
0 x y 3x
x 2x+ y y+ 1 3x

 ∈ Z[x, y]5×4.

1 A pedagogical introduction to the technique of homomorphic images can be
found, for example, in [11,12].
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