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a b s t r a c t

In this paper, the wave propagation method and the nonlocal elasticity theory are utilized to analyze the
vibration, wave power transmission and reflection in multi-cracked Euler-Bernoulli nanobeams. This aim
is pursued by deriving the propagation, reflection and transmission matrices and comparing the natural
frequencies obtained by these matrices with the available results in the literature. Then, the nonlocal and
crack-severity effects on the natural frequencies are presented for some combinations of the boundary
conditions. Finally, the effects of nonlocal and crack-severity parameters on the reflected and transmitted
power of a wave incident upon a crack location are studied in details for cracked nanobeams. The results
obtained via the reflection and transmission matrices will provide valuable insights into the subject of
wave power reflection and transmission analysis in nanoscale structures for the future. The computer
coding of the proposed method is much easier than the classical vibration analysis methods for similar
analyses which makes it more appropriate in implementation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nanotechnology deals with nanoscale materials and their ap-
plications. Researchers endeavor to extol their products using two
main allotropes of carbon, namely graphene sheets (GSs) and car-
bon nanotubes (CNTs). The CNTs have been modeled as shells,
Euler-Bernoulli beam, Timoshenko beam, and elastic rod [1e5]. In
the literature [1e5], the structures are assumed to be intact or free
from defects. It is known that defects can change the mechanical
behaviors of structures. For example, cracks, as a common defect in
structural elements, can reduce the natural frequencies of the
structures due to the fact that they become more flexible in pres-
ence of the cracks. Thus, the understanding of defects can improve
the design of Nanoelectromechanical Systems (NEMS). There are
some studies in which the effects of the defects are considered
[6e10]. Longitudinal and transverse vibrations of cracked nano-
beams were studied within the framework of the nonlocal
EulereBernoulli and the nonlocal Timoshenko theories [6e10].

Different nonlocal theories have been integrated with various
methods to study nanoscale structures [11e25]. In the works of
Eltaher et al. [11,12], the free vibration and stability analyses of FGM
nanobeams were studied via the finite element method. In another

study by Phadikar and Pradhan [13], nanoplates and nanobeams
were analyzed via the finite element method with a linear nonlocal
formulation. Moreover, Zhang et al. [14] studied the free vibration,
buckling and bending of micro/nanobeams via a hybrid nonlocal
EulereBernoulli beam model. In an article by Civalek and Akgoz
[15], free vibration of microtubules were analyzed via Differential
Quadrature (DQ) method. Gürses et al. [16] analyzed the free vi-
bration of nano annular sector plate based on the nonlocal con-
tinuum theory and the discrete singular convolution method (DSC).
Demir and Civalek [17] studied the torsional and axial response of
microtubules using the nonlocal continuum and nonlocal discrete
model via finite element method. Akg€oz and Civalek [18] intro-
duced a new size-dependent beam model based on the hyperbolic
shear deformation beam and modified strain gradient theory.
Apuzzo et al. [19] proposed an enhanced model of nonlocal torsion
based on the Eringen theory for nanobeam. Barretta et al. [20]
proposed a gradient Eringen model for functionally graded nano-
rods. In another work, Barretta et al. [21] presented a fully gradient
elasticity model for bending of nanobeams using a nonlocal ther-
modynamic approach. An enhanced version of the Eringen differ-
ential model was outlined by Barretta et al. [22]. Moreover, Barretta
et al. [23] studied the transversal deflection of Timoshenko nano-
beams using a nonlocal Eringen-like constitutive law described by
two material length-scale parameters. Furthermore, Barretta et al.
[24] proposed the first gradient nonlocal model of bending for
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Timoshenko functionally graded nanobeams based on the Eringen
model.

There is also an approach called wave propagation which is
separable from the above mentioned methods. This simple and
non-iterative approach considers the vibrations as waves propa-
gating through the structure and can be utilized for the vibration
analysis of the structures. An important difference of the wave
propagation approach from other methods is its additional ability
to provide a set of reflection and transmission matrices allowing
the reflected, transmitted power and energy flow of the waves in
the waveguides to be gauged. This ability highlights the utility of
wave propagation approach for energy reflection and transmission
analysis as well as vibration analysis. This approach was mainly
utilized in macrostructures. The vibration of Euler-Bernoulli beams
[26], Timoshenko beams [27,28], rotating Timoshenko beam [29],
curved beams [30], and variable thickness beams [31,32] are the
main researches in one dimensional waveguides. The wave prop-
agation method was also utilized for free vibration analysis of
frames [33,34]. Moreover, vibrations of thin cylindrical shell
[35,36], cross-ply laminated composite cylindrical shell [37], and
fluid-filled cylinder [38] were investigated using the wave propa-
gation approach. Recently, Bahrami et al. [39] used the wave
propagation method to calculate the natural frequencies of circular
and annular membranes. In other works, Bahrami and Teimourian
have also reported the utility of this approach for composite cir-
cular [40] and rectangular membranes [41].

The literature review points out the scarcity of studies on wave
reflection and vibration analysis of nanostructures through the
wave propagation approach. The influence of nonlocal scale on the
wave power reflection in rectangular nanoplate has been investi-
gated by Ilkhani et al. [42] using the wave propagation method.
Recently, Bahrami and Teimourian used the wave propagation
method to study the small scale effect on thewave power reflection
in Euler based nanobeams [43], Timoshenko nanobeams [44] and
circular annular nanoplates [45]. Based on author's knowledge,
there are still no studies on energy reflection and transmission in
nanostructures when there exist cracks in nanostructures. The
practical applications of nanostructures in the industry necessitates
a simple computational wave approach for analysis of wave
transmission and reflection in these structures. In the present pa-
per, the wave propagation technique is applied to a multi-cracked
nanobeam and the accuracy of the obtained natural frequency re-
sults by this method are assessed by comparing them with the
results provided in the literature. Then, the nonlocal and crack-
severity effects on the natural frequencies are presented for some
combinations of the boundary conditions. Finally, the effects of
nonlocal and crack-severity parameters on the reflected and
transmitted power of a wave incident on a crack location are
studied in details for the cracked nanobeams. The results obtained
via the reflection and transmission matrices will provide valuable
insights into the subject of energy reflection and transmission
analysis in nanoscale structures for the future.

2. Mathematical formulations

2.1. Equation of motion

In nonlocal elasticity theory, constitutive equations incorporate
the effects of atomic forces and small scale as material parameters
[46]. The differential form of the nonlocal constitutive equation has
been developed by Eringen [46] as follows:�
1� ðe0aÞ2V2

�
s ¼ C : ε (1)

where V2 denotes the Laplacian operator, s and ε are the stress and
strain tensors, C is fourth order elastic modulus tensor, a denotes
the internal characteristic length, and e0 is a constant depending on
the material characteristics. The value of parameter a depends on
lattice parameter, granular size and C-C bonds, and the material
constant. The parameter e0a is called the small scale. In any type of
analysis, comparison of the continuummodeling results with those
of atomistic ones determines the value of this parameter. Consider a
cracked beamwith n-1 cracks and n identical segments as shown in
Fig. 1. We can write the governing equations of a nonlocal
EulereBernoulli cracked beam model for its n segments as:

EI
v4wj

vx4
þ rA

v2

vt2

 
wj � ðe0aÞ2

v2wj

vx2

!
¼ 0; j ¼ 1;2; :::; n (2)

Three classical types of boundary condition can be categorized
based on the equation of motion as:

Free :
M ¼ 0

V ¼ 0

Clamped :

w ¼ 0

vw
vx

¼ 0

Simply supported :
w ¼ 0

M ¼ 0

(3)

The moment and shear force of the beam can be obtained based
on the nonlocal elasticity as follows [43]

M ¼ �EI
v2w
vx2

þ ðe0aÞ2rA
v2w
vt2

(4)

V ¼ �EI
v3w
vx3

þ ðe0aÞ2rA
v3w
vxvt2

(5)

The general solution of Eq. (2) can be written as:

wjðx; tÞ ¼
X∞
m¼1

Amje
iðrjx�utÞ; j ¼ 1;2; :::;n (6)

inwhich rj are the wave numbers, i ¼
ffiffiffiffiffiffiffi
�1

p
, t is time, and u denotes

the frequency. Substituting Eq. (6) into Eq. (2) yields

EIrj
4 � rAðe0aÞ2u2rj

2 � rAu2 ¼ 0; j ¼ 1;2; :::; n (7)

The analytical solution can be obtained by solving Eq. (7) as
follows:

rjð1;2Þ ¼ ±gj

gj ¼ 1
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 þ

�
b2k2

�2r
2

vuuut ; j

¼ 1;2;…;n

rjð3;4Þ ¼ ±iaj

aj ¼ 1
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� b2k2

2

vuuut ; j

¼ 1;2;…;n (8)
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