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a b s t r a c t

A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed
to fracture. Applicable to many materials, the main objective of this analysis was to develop a model
specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and
slow viscous deformations. Here the model is described in detail and tested with several benchmark
simulations. The model was used to simulate various ice-specific applications with resulting flow rates
that were compatible with Glen’s law, and produced under fragmentation fragment-size distributions
that agreed with the known analytical and experimental results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last few decades computer efficiency has increased
dramatically, paving the way for an increasing number of different
applications of discrete-element methods (DEMs). DEM models
have been used to investigate the behavior of a large variety of
materials in many different fields of science. The huge amount
of possibilities becomes evident in, e.g., Ref. [1]. To mention just
a few: the evolution of shear zones in sand for earth-pressure
problems [2], energy dissipation and particle motion in ball
mills [3], oedometric tests for railway ballast [4], silo discharge of
a cohesive solid [5], and the behavior of cohesive soil operated by
bulldozer blades [6].

There are DEM models that include properties like elasticity,
viscosity, and brittle behavior, but very rarely all of them. To
investigate the behavior of ice (or a material of similar kind)
in its full complexity, we need to incorporate all of the above
properties so as to include the complex nonlinear rheology of
ice. Some papers, where the aforementioned properties have been
taken into consideration, can be found in, e.g., Ref. [7]. In that
reference the material behavior was elasto-plastic, but plasticity
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was achieved in a time-dependent way, and the behavior could
therefore be considered to be viscoelastic. There are also some
models developed within the field of glaciology, which are specific
to ice. A fewmodels exist for the pure elastic behaviorwith fracture
[8] and [9], and Ref. [10] describes a model, where individual ice
elements can deform plastically, but cannot move relative to each
other without permanent breakup. In this investigation a new
DEM model for viscoelastic materials with fracture is introduced.
It is important to realize that all the properties of the model do
not necessarily appear simultaneously. Viscous behavior is present
as long as the stresses in the material are below the fracture
threshold. When this threshold is exceeded the material begins
to fracture, and its brittle properties begin to dominate. Elasticity
is always present as the basic property of the model. This model
is described in detail, and results of benchmark simulations are
compared to those of analytical and empirical considerations.

2. Model

The model consists of two-dimensional (2D) random-sized
discs which are connected together with massless elastic beams.
Formulation of the model begins with the elastic energy of a single
beam,

Etot =
1
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Fig. 1. A beam between particles 1 and 2 before and after deformation. r̂ is the
unit vector in the direction of the beam connecting the two discs, and ŝ is the unit
vector in the perpendicular direction. Beam’s equilibrium length and length after
deformation are denoted by l0 and l, respectively. Angles θ1 and θ2 denote rotations
with respect to the axis at both ends of the beam.

where ϵ, θ1, and θ2 are the axial strain and rotation angles of the
two ends relative to the axis of the beam, respectively, and ks and
kb are the corresponding stiffness parameters. The corresponding
forces and torques acting on the two ends of the beam can be
derived from the energy, Eq. (1), in the form

f1 =
ksϵ
l0

r̂ −
kb(θ1 + θ2)

l
ŝ,

f2 = −
ksϵ
l0

r̂ +
kb(θ1 + θ2)

l
ŝ,

τ1 = kbθ1,
τ2 = kbθ2, (2)

where l0 and l are the equilibrium and deformed length of the
beam, respectively. The axial unit vector, r̂ , and the unit vector, ŝ,
perpendicular to the axis are shown in Fig. 1. Deformation of the
beam in the axial direction is damped by forces

f µ

1 = sµ l̇r̂, f µ

2 = −sµ l̇r̂, (3)

and an off-axis deformation is damped by torques

τ
µ

1 = −bµθ̇1, τ
µ

2 = −bµθ̇2, (4)

where dots denote time derivatives. Coefficients sµ and bµ are
selected so that deformation of the beam is underdamped. When
two discs are not connected with a beam, the repulsive part of
the beam energy is used as a contact potential to prevent their
overlap. Collisions between discs are inelastic, with a velocity-
dependent damping force similar to the axial damping force of
a beam, in order to allow dissipation of energy. A beam breaks
if it is deformed beyond a threshold limit, which can be chosen
as a limiting maximum stress, strain, or elastic energy. Energy
thresholds are used throughout this paper. In our viscoelastic
simulations, a beam was also allowed to break below the fracture
threshold with a probability that depended on the stress applied
to it. When complemented by a rule to create new beams between
discs that were close to each other, this allowed the material to
undergo slow stress-dependent viscous flow. These fracture rules
are detailed in the simulation sections below. Body forces used
in the model were gravity and buoyancy, and others are easy to
add. The Newtonian dynamics of the discs were simulated using
an explicit scheme,

ai(t) = F i
tot(t)/mi

vi(t) = vi(t − ∆t) + ai(t)∆t (5)
ri(t) = ri(t − ∆t) + vi(t)∆t
αi(t) = τ i(t)/Ii
ωi(t) = ωi(t − ∆t) + αi(t)∆t (6)
θi(t) = θi(t − ∆t) + ωi(t)∆t,

where Eqs. (5) and (6) correspond to translational and rotational
degrees of freedom, respectively. In Eqs. (5), mi = πρr2i is the
mass of disc i with material density ρ and radius ri. In Eqs. (5), F i

tot
is the sum of all forces acting on disc i, and ai, vi, and ri are the
acceleration, velocity, and position of disc i, respectively. Similarly
in Eqs. (6), the angular acceleration, angular velocity, and rotation
angle of disc i are denoted by αi, ωi, and θi, respectively. The total
torque acting on disc i is τ i, and Ii = πρ/2r4i is its moment of
inertia. Time step ∆t can be scaled as ∆t ∼

√
ρr/Y , where Y is

Young’smodulus of thematerial (see below). Typical values for the
time step used in our simulations were 10−5–10−4 s. A flow chart
presenting the basic structure of the model is shown in Fig. 2.

2.1. Formation of the simulation lattice

A simulation lattice was generated by selecting a given number
of random-sized discs from a chosen diameter distribution, and
placing them loosely on a column above the floor of a rigid-wall
container. Gravity was then applied to the discs, which caused
them to fall and pile up on top of each other inside the container as
shown in Fig. 3. A polydisperse collection of discs has the advantage
over a monodisperse collection in that equal-sized discs inevitably
form a regular lattice which is not isotropic, and, therefore, not
ideal for simulating the physical fracture of isotropic materials. In
Fig. 3 discs of diameters of 0.5–2.0 m were used to fill a container
of the size 45 m × 45 m. The only interaction force between
discs in the simulation shown in Fig. 3 was the repulsive contact
force that kept the discs from overlapping. A similar overlap-
dependent contact force was also used for the interaction between
discs, and the walls of the container. After the lattice generation,
Delaunay triangulation [11] was used to form candidates for the
contact beams between discs. A connection suggested by Delaunay
triangulation was accepted as a contact beam if it connected discs
that were close enough to each other. This acceptance condition
can be expressed in the form

d ≤ C(r1 + r2), (7)

where d is the distance between discs, C is a constant larger than
unity, and r1 and r2 are radii of discs that are candidates to be
connected. If C = 1, the coordination number of the lattice would
be low resulting in a too weakly connected material. However,
C cannot be very large (C ≤ 2) because Delaunay triangulation
typically creates very long connections at the edges of the lattice,
and if C is too large, a beam can be formed between two discs with
an unconnected disc in between them (see Fig. 4).

2.2. Elastic moduli

Owing to the random sizes and arrangement of the discs, elastic
properties of the model are heterogeneous in a scale comparable
to the disc size. In larger scales, however, simulation parameters
ks and kb that control the stiffness of the beams, can be related
to Young’s modulus and Poisson’s ratio of the material. Details of
this derivation are shown in Appendix, and the total strain-energy
density of the deformed lattice is given by (assuming a unit depth
in the 2D system)

F = ρb
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where ϵx and ϵy are strains in the x and y directions, respectively.
Beam density, ρb = cC/r2, is the number of beams per unit area.
Here cC depends on the beam-length parameter, C , of Eq. (7), and r
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