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a b s t r a c t

The numerical stability of a conventional explicit numerical scheme for solving the inviscid multifluid
dynamical equations describing a multicomponent gas mixture is investigated both analytically and
computationally. Although these equations do not explicitly contain diffusion terms, it is well known that
they reduce to a single-fluid diffusional description when the drag coefficients in the species momentum
equations are large. The question then arises as to whether their numerical solution is subject to a
diffusional stability restriction on the time step in addition to the usual Courant sound-speed stability
condition. An analytical stability analysis is performed for the special case of a quiescent binary gas
mixture with equal sound speeds and temperatures. It is found that the Courant condition is always
sufficient to ensure stability, so that no additional diffusional stability restriction arises for any value of
the drag coefficient, however large. This result is confirmed by one-dimensional computational results for
binary and ternary mixtures with unequal sound speeds, which remain stable even when the time step
exceeds the usual diffusional limit by factors of order 100.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and summary

The dynamics of fluid mixtures is often described by means of
multifluid equations inwhich each component, species, ormaterial
in themixture satisfies its own continuity, momentum, and energy
equations. These equations contain interspecies interaction terms
that represent the pairwise exchange of mass, momentum, and
energy between the species. Equations of this type are widely used
in plasma physics [1–5], multiphase flow [6–10], and other areas. A
particular physical application of timely interest is the quantitative
description of material mixing [11–17], which is important in
combustion, inertial confinement fusion, and certain astrophysical
problems, inter alia.

Mixing (or demixing) inherently involves relativemotion of the
species; i.e., unequal species velocities. Those velocities are deter-
mined by the individual species momentum equations, which nor-
mally contain drag terms representing the pairwise exchange of
momentum between species due to frictional forces. When the
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drag coefficients are large, the differences between the species
velocities correspondingly become small. As is well (but perhaps
not widely) known, the relative motion of the species then be-
comes diffusional rather than inertial in character [5,17–22]. In this
regime, which we refer to as the diffusional or large-friction limit,
themultifluidmomentumequations reduce to a singlemomentum
equation for the mixture together with diffusional expressions for
the species velocities. The binary diffusion coefficients in those ex-
pressions are inversely proportional to the drag coefficients. The
resulting diffusion equations determine the mass fluxes in the
species continuity equations, and when they are treated explicitly
in numerical calculations they of course give rise to the usual fa-
miliar diffusional stability restrictions on the time step ∆t [23,24].

However, the multifluid equations remain valid and can still
be solved in their general form even when the drag coefficients
are large, provided the drag terms are treated implicitly to avoid
the unacceptably restrictive explicit stability condition that would
otherwise be incurred [16,24,25]. As will be seen, however, the
implicit treatment of the drag terms actually results in an explicit
treatment of the correspondingdiffusion terms in the large-friction
limit, and therefore would not be expected to remove or alleviate
the associated diffusional stability condition. Nevertheless, the full
multifluid equations themselves contain no explicit mass diffusion
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terms, so one might not at first expect their numerical solution to
be subject to a corresponding diffusional stability condition. On
the other hand, their known diffusional behavior for large drag
suggests that a diffusional stability condition should somehow
arise in that limit, but it is not immediately apparent whether, and
if so how, this occurs.

Our purpose here is to ascertain whether or not the numerical
solution of the multifluid momentum equations is subject to a
diffusional stability limit. To this end,weperforma Fourier stability
analysis of a standard numerical scheme for solving a simplified
linearized system of multifluid equations for a binary gas mixture.
The scheme is explicit except for the drag terms, which are treated
implicitly as discussed above. One would therefore expect it to
be subject to the usual Courant sound-speed stability condition
[23,24], in addition to whatever diffusional stability condition
might also arise. The value of the drag coefficient β is left arbitrary,
so the results encompass the opposite limiting cases of large and
small drag as well as all intermediate cases.

In order to derive analytical results, we find it necessary to
restrict attention to the case in which the temperatures and sound
speeds of the two species are equal. Even so, the stability analysis
is somewhat intricate, and it constitutes the bulk of the paper.
The analysis shows that the usual explicit diffusional stability
condition does indeed arise in the limit of large β , but in that
limit it is actually much less restrictive than the Courant condition
and consequently drops out of the overall stability condition for
the scheme as a whole. In the general case of arbitrary β , the
stability condition for the scheme as a whole is found to be simply
the usual Courant sound-speed condition, independently of β . The
numerical scheme is therefore not subject to a diffusional stability
condition for any value ofβ , however large (or small). These results
may seem counterintuitive if not paradoxical, so they are discussed
in sufficient detail to resolve the apparent paradox.

In contrast, the numerical solution of the single-fluid diffusional
equations to which the multifluid equations reduce for large β is
subject to the usual explicit diffusional stability condition, just as
onewould intuitively expect. Since the latter condition is quadratic
in the cell size ∆x, whereas the Courant condition is linear, the dif-
fusional condition always becomes the more restrictive for suffi-
ciently small ∆x. In that case, however, we further show that the
diffusional stability restriction only comes into play in situations
where the diffusional equations no longer accurately approximate
the multifluid equations, so it is an essentially harmless disadvan-
tage.

As mentioned, these analytical results are based on rather dra-
conian simplifications, so one has no assurance that they are
more generally applicable. To obtain more general, albeit empir-
ical, evidence, we also used a standard finite-difference scheme
for compressible flow to compute numerical solutions of the one-
dimensional multifluid equations for binary and ternary mixtures
with unequal sound speeds, to which the analytical results do not
apply. The calculations were found to remain stable even when
the time step exceeds the diffusional limit by factors of order 100.
This behavior is consistent with previous computational experi-
ence [16] and strongly suggests that the present analytical stability
results are more general than their derivation, and that numerical
schemes of this type are not subject to diffusional stability condi-
tions, in spite of the fact that the equations become diffusional in
form and character for large β .

The present investigation is restricted to multicomponent mix-
tures in which the different components are intimately mixed to-
gether on the atomic or molecular level. The multifluid equations
describing multiphase mixtures are generally similar in form ex-
cept for the pressure gradient terms [9,26], but those differences
profoundly affect the stability properties of the differential equa-
tions. The multiphase differential equations inherently contain a

physical instability analogous to the classical Kelvin–Helmholtz in-
stability [8], which does not occur in the multicomponent equa-
tions. This instability disappears in the diffusional limit, in which
the multiphase equations reduce to a single-fluid diffusional de-
scription just as the multicomponent equations do [17]. It seems
likely that numerical schemes for solving the multifluid equations
for multiphase mixtures are likewise immune from any corre-
sponding diffusional stability conditions, since there is no obvious
reason to suspect otherwise. However, this would bemore difficult
to confirm analytically because the numerical stability analysis is
complicated by the presence of the physical instability.

The remainder of the paper is organized as follows. The inviscid
multifluid equations for a multicomponent ideal gas mixture are
summarized in Section 2. In Section 3 the equations are specialized
to a binary gasmixture and are linearized about a quiescent steady
solution. The resulting linear equations are further specialized to
the case in which the two species have the same temperatures
and sound speeds, which allows the resulting system of four
equations to be decomposed into two decoupled subsystems
of two equations each. This greatly simplifies the subsequent
numerical stability analysis because the stability of each subsystem
can be analyzed separately, and the resulting equations for the
growth factors are quadratic rather than quartic.

In Section 4 we present the finite-difference equations that de-
fine the numerical schemeused to solve these two subsystems. The
overall numerical scheme consists of finite-difference approxima-
tions to the equations in each subsystem. The numerical scheme
we consider is explicit except for the drag terms, which occur only
in Subsystem 2 and are treated implicitly. The numerical stabil-
ity conditions for Subsystems 1 and 2 are derived in Section 5 by
means of a conventional Fourier stability analysis. The two subsys-
tems are of the same mathematical form except for the drag term
in Subsystem 2. A single stability analysis of Subsystem 2 thereby
also applies to Subsystem 1 as a special case. The stability condi-
tion for the scheme as a whole is then simply the more restrictive
of the stability conditions for Subsystems 1 and 2, and one thereby
obtains the results described above.

The stability analysis for the single-fluid equations that result
in the diffusional limit is given in Section 6. This analysis confirms
that the diffusional stability condition does indeed reappear in that
limit, but is essentially harmless. In Section 7wepresent the results
of the aforementioned numerical calculations for more general
binary and ternary mixtures. Section 8 contains a few concluding
remarks.

2. The multifluid differential equations

Themultifluid equations for an ideal gasmixture are essentially
just the usual governing equations for each individual component
or species in the mixture, with the addition of coupling terms rep-
resenting the exchange of mass, momentum, and energy between
the species. For simplicity we neglect the effects of viscosity, ther-
mal conductivity, and chemical reactions. The equations then take
the form [2,19,20,22,27]

∂ρm

∂t
+ ∇ · (ρmum) = 0 (1)

∂(ρmum)

∂t
+ ∇ · (ρmumum) = −∇pm +


n≠m

Fmn (2)

∂(ρmem)

∂t
+ ∇ · (ρmemum) = −pm∇ · um

+


n≠m

(Qmn + γmnΦmn) (3)

where ρm, um, pm, and em are respectively the partial mass den-
sity, mean velocity, partial pressure, and thermal internal energy
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