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a b s t r a c t

A new finite element method is presented for use of quadrilateral nine-node elements in the solution of
the incompressible Navier–Stokes equations. In a conventional predictor–corrector scheme, the method
applies the nodal averaging technique to discretize the Poisson equation used for the simultaneous
relaxation of velocity and pressure. Additionally, efficient approximation procedures are devised to
increase the speed of computation without deteriorating solution accuracy. The proposed numerical
schemes are evaluated on two-dimensional test problems including a classical lid-driven cavity flow and
a flow over a backward-facing step in a flow channel. The results show good accuracy evenwhen distorted
elements are used for calculation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Finite element methods for fluid flows have been extensively
studied over the last four decades and certain computational
schemes are nowwidely used in research and commercial numer-
ical codes (see Refs. [1–3] and the many references therein). There
are of course many other numerical techniques that are capable of
solving various challenging flow problems with accuracy (for ex-
ample, see Refs. [4–6] and the references therein). The research ef-
fort to develop efficient, robust, and accurate numerical methods
is still required together with the increase in performance of su-
percomputers.

For the numerical analyses of incompressible fluid flows, the
segregated methods, which are evolved from the marker-and-
cell (MAC) method [7], are commonly used to discretize the
Navier–Stokes equations. In the finite difference discretization, the
simplified MAC (SMAC) method was developed by applying the
predictor–corrector method to the momentum equation in which
the pressure is implicitly discretized in time [8], and then the
highly simplified MAC (HSMAC) method was proposed as a more
efficient approach, which was developed by adding the simulta-
neous relaxation scheme for modifying velocity and pressure to
the SMAC method [9]. Similar methods, some of which are known
as the semi-implicit method for pressure-linked equations (SIM-
PLE) [10] and its modified variant, SIMPLE Revised (SIMPLER) [11],
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were also devisedwithin the framework of the predictor–corrector
procedure; in those methods, the calculation approach for solv-
ing the pressure is different from that for the SMAC method. An
extended method based on the HSMAC algorithm was proposed
by Tanahashi et al.; they converted the HSMAC method into the
one for the finite element discretization together with an ingenu-
ity at solving high Reynolds number fluid flows [12]. This method
was named the generalized simplified MAC (GSMAC) method and
has been applied to various flow problems, e.g., electrically con-
ducting fluid flow [13], free-surface flow [14,15], and visco-elastic
flow [16]. While much research effort has been expended with
this finite element technique, linear (bilinear or trilinear) shape
functions have been used for the interpolation of velocity and the
accuracy of the scheme has almost always been examined with
undistorted grids (i.e., rectangular and rectangular parallelepiped
grids). An improved approach that employs higher-order interpo-
lation functions for both velocity and pressure is desirable, and the
method needs to be robust even if it is applied to a distorted mesh.

The objective in this paper is to present a new finite element
technique using nine-node elements in an efficient way for two-
dimensional (2D) solutions of incompressible fluid flow problems.
An important feature is that the nodal averaging technique
is incorporated into the simultaneous relaxation procedure in
order to easily obtain the amount of correction for pressure at
the grid nodes. In fact, this idea can also be applied to non-
quadrilateral elements. In addition, two approximation methods
are invented for the calculation of the coefficient matrices
obtained in the finite element discretization of the Navier–Stokes
equations. In these methods, the integrands are approximated so
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as to divide the coefficient matrices into element-dependent and
element-independent parts, which leads to significant speed-up
of computation compared with the case where a conventional
numerical integration method (e.g., Gaussian quadrature rule) is
used for the calculation of the integrals.

The paper is organized as follows. In Section 2, the governing
equations and the finite element discretizationprocedures are fully
described together with the approximation schemes described
above. Section 3 presents demonstrative numerical test and
solutions to illustrate the capability of the proposed methods. The
solutions include the use of undistorted and distorted elements,
with coarse and fine meshes, in the analysis of a well-known lid-
driven cavity flow and a flow in a backward-facing step geometry.
Lastly, conclusions of the present work are given in Section 4.

2. Numerical method

2.1. Governing equations and time marching algorithm

The governing equations are the equation of continuity and
the momentum equation for incompressible fluid flow, which are,
respectively, written in dimensionless form as follows:

∇ · v = 0, (1)
∂v
∂t

+ (v · ∇) v = −∇p +
1
Re

∇
2v, (2)

where v is the velocity, t is the time, p is the pressure, and Re is the
Reynolds number. Here, the external force is not taken into account
in Eq. (2). Since pressure waves propagate through incompressible
fluid instantly, the pressure in themomentumequationneeds to be
discretized implicitly in time while the velocity can be discretized
explicitly. As a result, Eq. (2) is discretized in time in the following
form:

vn+1
− vn

1t
= −


vn

· ∇

vn

− ∇pn+1
+

1
Re

∇
2vn, (3)

where the superscript n denotes the n-th time step, and 1t is the
increment of time.

According to the fractional step approach [9,12], Eq. (3) is
divided into the following two equations:v − vn

1t
= −


vn

· ∇

vn

− ∇pn +
1
Re

∇
2vn, (4)

vn+1
− v̂(m)

1t
= −∇


pn+1

− p̂(m)

. (5)

Here, v in Eq. (4) is the intermediate value of velocity, which is
explicitly obtained from this equation as a predictor step. The
velocity v̂(m) and pressure p̂(m) in Eq. (5) correspond to the solution
of the following Poisson equation at them-th iteration step:

∇
2φp = ∇ · v̂, (6)

where

φp ≡

pn+1

− p̂

1t. (7)

Eq. (6) is obtained from the divergence of Eq. (5) and the require-
ment that ∇ · vn+1

= 0. The velocity v̂ and pressure p̂ are iter-
atively calculated through a Newton–Raphson method with the
initial guess v̂(0) = v and p̂(0) = pn until the value of ∇ · v̂ satisfies
the convergence criterion. This is called the simultaneous relax-
ation method, and its detailed calculation method for the present
scheme will be described in Section 2.3. For the moment, let δφ

(m)
p

be the amount of correction for the modified potential φ(m)
p at the

m-th iteration step, i.e., δφ(m)
p = φ

(m+1)
p − φ

(m)
p . Then, the velocity

v̂ and pressure p̂ are corrected as follows:

v̂(m+1)
= v̂(m)

+ ∇δφ(m)
p , (8)

p̂(m+1)
= p̂(m)

−
δφ

(m)
p

1t
, (9)

where Eqs. (8) and (9) are derived from Eqs. (5) and (7), respec-
tively. After the error of the equation of continuity becomes neg-
ligibly small, the iteratively corrected velocity and pressure values
are replaced by vn+1

= v̂(m+1) and pn+1
= p̂(m+1), respectively.

2.2. Finite element formulation for the predictor step

Next, the equations obtained in Section 2.1 are further dis-
cretized in space based on a finite element procedure. Here, the
velocity components are interpolated using piecewise quadratic
shape functions, while the pressure is interpolated using piece-
wise linear shape functions due to the requirement known as the
inf–sup condition [17,18]. First, with the use of a Galerkin method,
Eq. (4), the predictor step, is spatially discretized as follows:

M ij
vj − vn

j

1t
= −An

ijv
n
j + Cikpnk −

1
Re

Dijvn
j − Si, (10)

where the subscripts i and j denote the global node number for
velocity, while the subscript k denotes the global node number
for pressure. Here, the summation convention applies to the sub-
scripts j and k. The last term on the right-hand side of Eq. (10),
Si, corresponds to the boundary integral expression in which non-
Dirichlet boundary condition(s) is (are) incorporated. It is assumed
here that the boundary integral term Si does not depend on time.
The coefficient matrices in Eq. (10) are given by the following:
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(11)

where Ω represents the calculation domain and ΓI is its bound-
ary where the velocity is not prescribed, N (2)

i (or N (2)
j ) and N (1)

k are
the piecewise quadratic and linear shape functions, respectively,
and n is the outward-pointing unit normal vector on the boundary.
Strictly speaking,Mij, An

ij, Cik, andDij in Eq. (11) show the coefficient
matrix elements for some specific global nodes i and j in scalar or
vector form; however, they are simply called the coefficient matri-
ces in this paper. Note that the mass matrixMij is approximated by
the lumped mass matrixM ij [19] in Eq. (10), which is defined by

M ij = δij


Ω

N (2)
i dΩ, (12)

where δij is the Kronecker delta.

2.3. Simultaneous relaxation method for velocity and pressure

Since the intermediate value of velocity, v, at the predictor
step does not satisfy the equation of continuity in calculation
space in general, the velocity needs to be corrected through
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