Computer Physics Communications 195 (2015) 95-101

Contents lists available at ScienceDirect COMPUTER PHYSICS

COMMUNICATIONS

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Optimizing legacy molecular dynamics software with
directive-based offload

@ CrossMark
W. Michael Brown**, Jan-Michael Y. Carrillo®, Nitin Gavhane ¢, Foram M. Thakkar ¢,
Steven J. Plimpton ¢

2 Intel Corporation, Portland, Oregon, USA

b Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
¢ Computational Centre of Expertise, Shell India Markets Private Limited, Bangalore, India

4 Multiscale Science, Sandia National Laboratories, Albuquerque, NM, USA

ARTICLE INFO ABSTRACT

Article history:

Received 10 November 2014
Received in revised form

3 April 2015

Accepted 5 May 2015
Available online 14 May 2015

Directive-based programming models are one solution for exploiting many-core coprocessors to increase
simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload
models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper,
we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on
a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently
on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we
demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme

Keywords:
Mg’lecular dynamics cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics
Xeon Phi simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and

GPU NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic

Coprocessor molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the
Accelerator “Intel package” supplied with LAMMPS.
Many-core © 2015 Elsevier B.V. All rights reserved.

1. Introduction

Issues with power consumption and heat dissipation have
led to a trend towards many-core processors as an approach to
increase parallelism with electrical power efficiency. Although
bootable many-core processors are expected to be available in
the future, current high performance computers exploit many-
core processors with a hybrid configuration using nodes containing
traditional CPUs along with graphics processing units (GPUs) or
Intel® coprocessors. In these designs, source code modifications
are necessary in order to efficiently use the system.

In our previous work, we have focused on the design of efficient
algorithms to use GPU accelerators for large-scale molecular
dynamics (MD) simulations [1-4]. For this work, a separate library
was designed for the LAMMPS molecular dynamics software [5]

* Corresponding author.
E-mail addresses: michael.w.brown@intel.com (W. Michael Brown),
carrillojy@ornl.gov (J.-M.Y. Carrillo), Nitin.Gavhane@shell.com (N. Gavhane),
Foram.Thakkar@shell.com (F.M. Thakkar), sjplimp@sandia.gov (S.J. Plimpton).

http://dx.doi.org/10.1016/j.cpc.2015.05.004
0010-4655/© 2015 Elsevier B.V. All rights reserved.

with MD algorithms modified to run efficiently on GPUs. This
library could be compiled using either CUDA or OpenCL. Although
this approach has allowed for GPU-acceleration in production
simulations, the use of a separate programming language and
different algorithms on the CPU and GPU introduces additional
code complexity and requires optimization of separate code
paths depending on the target. For example, in MD, redundant
calculation is typically used to avoid memory conflicts for force
updates on the GPU where greater than 10,000 threads can be in
flight simultaneously. In the case of 3-body potentials, this requires
up to 3 times as many force calculations compared to the CPU
algorithm, new neighbor list routines, and doubling of the volume
of the border regions between neighboring MPI tasks in the spatial
decomposition [4].

The Intel® Xeon Phi ™ coprocessor is an x86-based many-core
processor that also connects to the host through the PCI express
bus. Because the coprocessor runs a full-service Linux operating
system, there are several options for using the coprocessor in HPC
systems. These include “native” mode, where code is run solely
on the coprocessors without involving the host processor, “sym-
metric” mode, where MPI tasks run on both the CPUs and the co-
processor, and “offload” mode, where the host offloads some of

http://dx.doi.org/10.1016/j.cpc.2015.05.004
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.05.004&domain=pdf
mailto:michael.w.brown@intel.com
mailto:carrillojy@ornl.gov
mailto:Nitin.Gavhane@shell.com
mailto:Foram.Thakkar@shell.com
mailto:sjplimp@sandia.gov
http://dx.doi.org/10.1016/j.cpc.2015.05.004

96 W. Michael Brown et al. / Computer Physics Communications 195 (2015) 95-101

the work to be performed on the coprocessor. The best choice will
depend upon a number of factors, but for legacy HPC software, “of-
fload” provides some advantages in that optimizations can be fo-
cused on select compute-intensive routines without consideration
or alteration of the distributed memory parallelization. Therefore,
we chose this approach to evaluate modification to the LAMMPS
MD software to allow for utilization of Intel® Xeon Phi ™ copro-
cessors. Because the architecture is x86-based, we also examine
how the modifications influence performance on more traditional
Intel® Xeon® CPUs.

2. Methods
2.1. LAMMPS

In this work, we are considering enhancements to the LAMMPS
molecular dynamics package [5]. LAMMPS is parallelized via
MPI, using spatial-decomposition techniques that partition the
simulation domain into smaller subdomains, one per processor. In
this approach, each MPI task owns a set of local atoms that are
within the subdomain, but also stores data for ghost atoms that
are owned by another MPI task and within the cutoff distance
at the subdomain borders. For these atoms at the borders, MPI
communication can occur at every timestep because their energy
is affected by atoms owned by multiple MPI tasks.

LAMMPS is a general purpose MD code capable of simulating
biomolecules, polymers, materials, and mesoscale systems. It is
also designed in a modular fashion with the goal of allowing
additional functionality to be easily added. This is achieved via a
variety of different style choices that are specified by the user in an
input script and control the choice of force-field, constraints, time
integration options, diagnostic computations, etc. At a high level,
each style is implemented in the code as a C++ virtual base class
with an appropriate interface to the rest of the code. For example,
the choice of pair style (e.g. lj/cut for Lennard-Jones with a cutoff)
selects a pairwise interaction model that is used for force, energy,
and virial calculations. Individual pair styles are child classes that
inherit the base class interface. Thus, adding a new pair style to the
code (e.g. lj/cut/hybrid for a Lennard-Jones potential optimized for
hybrid execution, is as conceptually simple as writing a new class
with the appropriate handful of required methods or functions,
some of which may be inherited from the parent-class pair style
(lj/cut in this case).

2.2. Offload

For this work, we have used the Intel® Language Extensions
for Offload (LEO) directives to handle data allocation on the
coprocessor, asynchronous data transfer and computation offload,
and synchronization. Because directives are used, the code can
be compiled by any C++ compiler and used on machines that do
not contain coprocessors. Additionally, LEO supports an if clause
allowing the same routine to be called with and without offload.
This can be used to perform computations on the CPUs and the
coprocessor simultaneously. The LEO model is advantageous in
that the code inside an offloaded region supports C++ and Fortran,
has no restrictions on function calls to other routines, and can use
different parallel programming models such as OpenMP, POSIX
Threads, or Intel® Cilk™ Plus. Example directives with LEO are
given in the listing:

double *a, *b, *c;
int N, C, F, L;

// ... setup code ...

// Allocate N elements on coprocessor ’C’ for

// host allocation ’a’, ’b’, and ’c’

#pragma offload_transfer target(mic:C) \
nocopy(a,b,c:length(N) alloc_if(1) free_if(0))

// Free memory used by x on coprocessor
#pragma offload_transfer target(mic:C) \
nocopy(a,b,c:alloc_if(0) free_if(1))

// 0ffload computation to coprocessor

// - only if F == 1, otherwise compute on host

// - only transfer L elements, if L == 0, nothing

// - non-blocking offload, host pointer used as ref

// - do not allocate or free any arrays

#pragma offload target(mic:C) if(F) \
in(a,b:length(L) alloc_if(0) free_if(0)) \
out(c:length(L) alloc_if(0) free_if(0)) \
signal(c)

for (int i = start; i < end; i++)
c = foo(a, b);
}

// Block until asynchronous offload with ref c done
#pragma offload_wait target(mic:C) wait(c)

Offload is used for both neighbor list builds and calculation
of short-range terms including energies, forces, torques, and
virials. In order to obtain performance, memory allocation on the
coprocessor is never performed within a loop, unless necessary to
grow an allocation to fit needed data. Additionally, data transfer
for constant quantities (atom types, charges, etc.) is only repeated
on timesteps when neighbor lists are re-built, since those are the
only steps when atoms migrate to new processors, changing the
per-atom data structures.

In order to utilize both the CPU and coprocessor on hybrid ma-
chines, offload for a fraction of the work is supported. The frac-
tion is supplied as an optional parameter for the simulation run. If
the offload fraction is 0, the coprocessor is not used. In the default
case, dynamic load balancing is performed to automatically adjust
the fraction at each neighbor list build based on the computational
time being monitored on both the host and coprocessor. The ob-
jective is to minimize idle time on both. Currently, we are unable
to attain data transfer times using LEO and therefore they are not
included in the load balance calculations. The fraction for load bal-
ancing is calculated using a weighted mean with a 0.1 weight for
the current timestep and 0.9 for the previous value. The load bal-
ance fraction is calculated so as to balance the time for neighbor
list and short-range calculations on the coprocessor versus neigh-
bor list, short-range, long-range, and bond/angle calculations on
the host, since they run concurrently.

We have implemented two different approaches for dividing
the work between the host and the coprocessor. In the first, the
local atoms are divided so that the host and coprocessor each loop
over the neighbors of a distinct set of atoms. In the second, the co-
processor is still assigned a subset of the local atoms, but no ghost
atoms are included in the neighbor lists used on the coprocessor.
The host loops over all local atoms, but for those evaluated on the
coprocessor, only ghost atoms are included in the neighbor list.
This approach offers more flexibility in overlapping MPI communi-
cations with computation on the coprocessor. In both cases, neigh-
bor list builds keep track of the minimum and maximum indices
for atoms used in the lists. Because LAMMPS employs methods to
sort atom data based on spatial location, this approach can be used
to reduce the amount of data transfer with the coprocessor and
also the range of atoms involved in force accumulation for thread-
private arrays.

Download English Version:

https://daneshyari.com/en/article/502151

Download Persian Version:

https://daneshyari.com/article/502151

Daneshyari.com

https://daneshyari.com/en/article/502151
https://daneshyari.com/article/502151
https://daneshyari.com

