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a b s t r a c t

Due to the complex microstructures of porous materials, the conventional finite element method is often
inefficient when simulating their mechanical responses. In this paper, a key-node finite element method
is proposed. First, the concept of key-node is introduced over the element level, and then the governing
equations are theoretically derived and corresponding boundary conditions for shape functions of key-
node finite element are prescribed. The key-node finite elementmethod is finally established by following
the procedure of conventional finite element method to numerically solve the shape functions. Including
the information of micro-structures and physical details in shape functions, the key-node finite element
is more efficient when preserving a high accuracy, which is validated by typical applications to elastic
and elasto-plastic analyses of porous materials. It is straightforward to extend the present method to the
three-dimensional case or to solvingmore challengeable problems such as dynamical responseswith high
frequencies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

To effectively model problems with complex micro-structures
and/or physical details, much attention has been paid to the mod-
ification of the conventional finite element method (CFEM) from
many aspects in recent decades. Typical work includes the numer-
ical manifold method (NMM) proposed by Shi in 1991 [1], the gen-
eralized finite element method (GFEM) proposed by Babuska et al.
in 1996 [2], and the extended finite element method (XFEM) pro-
posed by Moes et al. in 1999 [3]. Although shape functions are en-
riched in these methods for different purposes, polynomial terms
are still essential, whichever are expressed in terms of global area
coordinates (e.g. for triangular elements) or local parent coordi-
nates (e.g. for quadrilateral elements) [4,5]. Since the shape func-
tions are a priori given and independent of problems to be solved
for, the solution accuracy and efficiency are often case dependent.

To change this situation, Babuska et al. [6] proposed the idea
that the basis functions adapted to the specific problem, and then
applied it to the problem with rough coefficients. This idea was
later developed byHou et al. [7] to be themulti-scale finite element
method (MsFEM), and then further to be the generalized MsFEM
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(GMsFEM) to perform multiscale simulations for problems with-
out scale separation over a complex input space [8]. Recently, the
MsFEMwas extended tomodeling plane elasticity problems [9,10].
Nevertheless, it is still difficult for theMsFEM tomodel porousma-
terials because of the complex compatibility between elements.

To this end, the key-node finite element method (KN-FEM)
is proposed in this paper. In Section 2, the concept of key node
is first presented, and then the interpolation of the KN-FEM is
introduced for plane elasticity problems. The governing equations
are finally derived to shape functions of the KN-FEM. In Section 3,
the corresponding boundary conditions (BCs) are firstly discussed
for different key node finite elements, and then shape functions
are calculated as compared with those of the conventional finite
element if any. Finally, the partition of unity property is verified
as well in this section. In Section 4, the KN-FEM is applied to some
typical exampleswith porousmaterials to validate its accuracy and
efficiency. The concluding remarks are made in Section 5.

2. Basic theories

2.1. Concept of key-node finite element

As shown in Fig. 1, for a quadrilateral 4-node element, four
nodes are necessary to define the element shape. So it is quite
natural to call the four corner nodes the key nodes of quadrilateral
element.
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Fig. 1. A quadrilateral element and its four key nodes.

The concept of key node is the generalization of corner nodes.
As shown in Fig. 2(a), for the purpose to better interpolation in a
quadrilateral element, it is necessary to introduce one more node
along edge 1–2. At this point, node 5 is also called a key node, and
therefore the element is termed as a quadrilateral element with
5 key nodes. In this fashion, a quadrilateral element with more
than 5 key nodes can be defined and then used when necessary.
For instance, in Fig. 2(b) is shown a quadrilateral element with 8
key nodes.

The elements shown in Figs. 1 and 2 are all called key-node
finite element. It should be noted that key nodes can be at
discretion allocated along element edges, no matter what the
number is or where the positions are.

2.2. Interpolation of key-node finite element method

In this paper, our attention is confined to plane elasticity
problems. In this case, the governingdifferential equations in stress
form are

σij,j + fi = 0 in Ω (1)

where σij are the components of stress tensor and fi (x, y) are
the components of body force vector. The subscript, j denotes the
partial differentiation with respect to coordinate x if j = 1 or y
if j = 2. In addition, as a well-defined problem, over the whole
boundary Γ = ∂Ω = Γu ∪ Γt , the essential BCs and natural BCs
are prescribed on Γu and Γt , respectively.

After invoking Hooke’s law and the strain–displacement
relations of small deformation, in terms of displacement field
(u, v), Eq. (1) is rewritten as the following Navier equation [11]

∇ · (µ∇u) +
∂

∂x
[(λ + µ) θ ] + fx = 0

∇ · (µ∇v) +
∂

∂y
[(λ + µ) θ ] + fy = 0

(2)

where λ and µ are Lame constants. Here, we assume that the
material is isotropic but may be inhomogeneous and therefore

the two constants vary with (x, y). θ = ∂u/∂x + ∂v/∂y is the
displacement divergence in the two-dimensional setting.

For a linear problem, due to the superposition principle [11,12]
and considering the basis feature of shape functions in the finite
element method, the homogeneous form of Eq. (2) is fundamental,
i.e.

∇ · (µ∇u) +
∂

∂x
[(λ + µ) θ ] = 0

∇ · (µ∇v) +
∂

∂y
[(λ + µ) θ ] = 0.

(3)

To get a closed-form of shape functions, the interpolation of
key-node finite element should be [10]
u =


φi
uuui +


φi
uvvi

v =


φi

vuui +


φi
vvvi

(4)

where φi
uu, φi

uv , φi
vu and φi

vv are shape functions of key node
element at node i. Different from the conventional interpolations,
coupling terms φi

vu and φi
uv appear in Eq. (4) to reflect the mutual

influence of nodal displacements ui and vi.
Considering the versatility of the finite element method in

approximating possible variations, as a sufficient condition, on
substituting Eq. (4) in Eq. (3), we eventually obtain governing
equations for the shape functions over each element, i.e.

∇ ·

µ∇φi

uu


+

∂

∂x


(λ + µ)


∂φi

uu

∂x
+

∂φi
vu

∂y


= 0

∇ ·

µ∇φi

vu


+

∂

∂y


(λ + µ)


∂φi

uu

∂x
+

∂φi
vu

∂y


= 0

(5a)

and
∇ ·


µ∇φi

uv


+

∂

∂x


(λ + µ)


∂φi

uv

∂x
+

∂φi
vv

∂y


= 0

∇ ·

µ∇φi

vv


+

∂

∂y


(λ + µ)


∂φi

uv

∂x
+

∂φi
vv

∂y


= 0.

(5b)

3. Calculation of the shape functions

It turns out that the shape functions are crucial to the key
node finite element. Unfortunately, because the key nodes are
often allocated according to complex micro-structures or physical
details, it is hard to obtain the analytic solution to Eq. (5) except for
very special cases (e.g. see [13]). To this end, a numerical solution
via the CFEM on element level is preferred. Such a choice is in
reality straightforward because the finite element code can be
readily invoked when considering a strong resemblance between
Eqs. (5) and (2), only with the specific BCs instead.
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(a) With 5 key nodes. (b) With 8 key nodes.

Fig. 2. A quadrilateral element with more than 4 key nodes.
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