Accepted Manuscript

Effect of age and level of damage on the autogenous healing of lime mortars

C. De Nardi, A. Cecchi, L. Ferrara, A. Benedetti, D. Cristofori

PII: \$1359-8368(17)30539-5

DOI: 10.1016/j.compositesb.2017.05.041

Reference: JCOMB 5064

To appear in: Composites Part B

Received Date: 13 February 2017

Revised Date: 21 April 2017 Accepted Date: 13 May 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of age and level of damage on the autogenous healing of lime mortars

C. De Nardi^{1*}, A. Cecchi¹, L. Ferrara², A. Benedetti³, D. Cristofori³

¹ Università IUAV di Venezia, DACC - Venezia, Italy

²Politecnico di Milano, DICA - Milano, Italy

³Università Cà Foscari Venezia, DSMN - Venezia, Italy

Abstract

Natural hydraulic lime-based mortars are recommended for retrofitting operations in historical

buildings, primarily because of their high chemical, physical and mechanical compatibility with the

existing ones; moreover, their autogenous and engineering self-healing capacities make them a

more suitable material for the aforementioned interventions.

This work proposes a methodology to quantify the autogenous self-healing in terms of recovery of

the compression strength and ultrasonic pulse velocity in samples made of natural hydraulic lime

mortars; specimens were pre-cracked at different ages (14 - 84 days) and levels of damage (70% of

the compression strength in pre-peak regime; 90% of the compression strength in post-peak

regime), and then cured under water up to 28 days.

The capacity of healing after two loading/healing cycles has been also investigated.

An interdisciplinary approach has been pursued characterising the mechanical aspects of the healing

and the chemical nature of the products via SEM/EDS analyses.

The results provide useful indication about the dependence of the self-healing capacity on the

aforementioned variables.

Keyword: autogenous self-healing, compressive strength, UPV, lime-based mortar

1

Download English Version:

https://daneshyari.com/en/article/5021558

Download Persian Version:

https://daneshyari.com/article/5021558

Daneshyari.com