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a b s t r a c t

Laminated composite structures consisting of load-carrying and multifunctional materials represent a
rather powerful material system. The passive, load-carrying layers can be made of isotropic material or
fiber-reinforced composites, while piezoelectric materials represent the most common choice of
multifunctional materials for active layers. The multifunctionality of piezoelectric layers is provided by
their inherent property to couple mechanical and electric fields. The property can thus be used to sense
deformations or produce actuating forces. A highly efficient 3-node shell element is developed for
modeling piezoelectric laminated composite shells. The equivalent single-layer approach and Mindlin-
Reissner kinematics are used in the element formulation together with the discrete shear gap (DSG)
technique to resolve the shear locking and strain smoothing technique to improve the performance.
Piezoelectric layers are assumed to be polarized in the thickness direction thus coupling the in-plane
strains with the electric field oriented in the thickness direction. The co-rotational FE formulation is
used to account for geometrically nonlinear effects. Numerical examples cover linear and geometrically
nonlinear static and dynamic cases with piezoelectric layers used as actuators and sensors.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structures render some 80% of all engineering
structures and are still a growing portion of engineering structures
in a broad range of sizes and quite diverse applications. They are a
result of the tendency to reduce the structural dead-load but keep
at the same time the high level of carrying capacity and stiffness. It
is the combination of the shape and thinness of the walls that
provides those advantages. The advantages are further improved by
use of modern engineering materials - laminates, with layers made
of various materials that could be isotropic or, more frequently,
fiber-reinforced composites. Orthotropic fiber-reinforced compos-
ite laminates offer vast options for tailoring material properties
through the choice of constituent materials, fiber orientation,
number, thickness and sequence of layers.

Despite all these advantages, composite laminates may also
suffer from structural stability issues and are sensitive to vibrations.
The idea behind the term smart/adaptive structures offers a great

potential to cope with such challenges. The term has been adapted
by the engineering community two decades ago to redefine the
concept of structures from a conventional passive deformable
system to an active controllable system with inherent self-sensing,
diagnosis, actuation and control capabilities [1]. The use of multi-
functional materials enables application of active elements (sensors
and actuators) with excellent capability of structural integration.
Piezoelectric materials represent quite a common choice of multi-
functional materials for the considered type of structures, which is
due to their operational frequency range as well as stroke and force
range they can produce, when shaped for the use with thin-walled
structures. Their inherent property to couple mechanical and
electric fields is used for this purpose. Since it is a two-way
coupling, it can be used for actuation by producing desired forces
through a predefined electric potential (reverse piezoelectric ef-
fect), and for sensing, as deformations give rise to a strain-
proportional electric field (direct piezoelectric effect). Such sys-
tems have a broad range of applicability, including vibration sup-
pression [2e4], structural health monitoring [5,6], shape control
[7,8], to name but a few.

Successful design of piezoelectric laminates and appropriate
control laws calls for efficient and reliable approaches for modeling
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and simulation of their behavior. Whereas some researchers pro-
vided analytical considerations of piezoelectric laminated struc-
tures [9e11], the attention was mainly turned to the finite element
method (FEM) as a predominant numerical method in the field of
structural analysis. Numerous developments of piezoelectric beam,
plate and shell elements are the best prove of how enticing this
research field is. An exhaustive overview would be prohibitively
long. An interested reader may address the survey from Benjeddou
[12] for a thorough overview of the development in the field during
the ‘90s and the development continued at the same pace in the
years to come. Although it was confined to the considered type of
material system and structures, still a few major streams of
development can be distinguished. Some of the developments
were aimed at high fidelity solid elements, with various techniques
used to improve the performance. This includes the mixed varia-
tional formulation applied with an 8-node piezoelectric solid shell
element by Klinkel and Wagner [13], and the assumed strain
technique applied with an 18-node element by Lee et al. [14].
Willberg and Gabbert [15] applied the isogeometric approach to
develop a 3D piezoelectric finite element for smart structures. Li at
al [16]. proposed 2D and 3D elements with the smoothed strain
technique for piezoelectric structures.

If the global structural behavior is aimed at, 2D elements, i.e.
plates and shells, offer greater numerical efficiency. A large number
of developed elements use the equivalent single-layer approach
and are mainly based either on the classical laminate theory that
implements Kirchoff-Love kinematics (e.g. Refs. [17,18]), or the first-
order shear deformation (FSDT) theory with Mindlin-Reissner ki-
nematics. The latter was more frequently used in the FEM de-
velopments as it includes the transverse shear effects and requires
the C0-continutity from the shape functions (compared to the C1-
continuity needed for the classical laminate theory). The de-
velopments cover broad range of finite elements including linear
triangular [19] and quadrilateral [20] shell elements, biquadratic 8-
node [21] and 9-node [22] shell elements, etc. As shell elements are
notorious for the shear andmembrane locking phenomena, various
techniques, such as discrete shear gap (DSG) [20], mixed-
interpolation of tensorial components (MITC) [23], selectively
[21] and uniformly [22] reduced integration, etc. Were applied to
alleviate the problem. The developed elements were used to
investigate further effects in modeling electro-mechanical coupled
field, such as the convergence behavior of FEM results [24], and, for
users’ convenience, some developments were also implemented in
commercial FEM programs [25]. The isogeometric approach was
also considered in the development of 2D elements for piezoelec-
tric laminates. Phung-Van et al. [26] used it in combination with a
higher-order shear deformation theory.

Layerweise theories were also addressed to provide finite ele-
ments that stand between the 2D elements based on the equivalent
single-layer approach and 3D elements, regarding the numerical
effort and achieved accuracy. For this purpose, the Carrera Unified
Formulation (CUF) for multilayered plates and shells [27] is
frequently applied. Based on it, Cinefra et al. [28] developed a 9-
node plate element for static analysis using the MITC technique
and variable through-the-thickness layer-wise kinematics. This
development was later extended to cover free-vibration analyses of
piezoelectric plates [29]. Milazzo [30] used the approach that re-
duces the coupled-field problem to mechanical one and imple-
mented both equivalent single-layer and layer-wise approaches.

Geometric nonlinearities were significantly less addressed in
the available literature and this is one of the contributions this
paper aims at. A linear triangular shell element, whose mechanical
part is based on the development by Bletzinger et al. [31] and
Nguyen-Thoi et al. [32], was extended by the authors of this article
to include piezoelectric layers polarized in the thickness direction

and to cover geometric nonlinearities characterized by finite local
rotations but small strains. The co-rotational (CR) FEM formulation
[33e35] is used for the purpose. Application of the element for
static and dynamic actuator and sensor cases will be demonstrated.

2. 3-Node piezoelectric shell element

The choice to develop the linear triangular shell element was
motivated by its high numerical efficiency and meshing ability.
However, those advantages are accompanied by the disadvantage
of relatively stiff element behavior. Since it is a flat element, shell
behavior is obtained by directly superposing the plate and mem-
brane behavior. The mechanical field of the element relies on the
development by Bletzinger et al. [31] and the DSG technique is used
to alleviate the shear locking. Nguyen-Thoi et al. [32] used the strain
smoothing technique to further improve this element, i.e. to avoid
large strain and stress oscillations between adjacent elements and
to render the element formulation independent from node
numbering. Another aspect that talks in favor of the linear trian-
gular element is the objective of its implementation into the co-
rotational FEM formulation for geometrically nonlinear analysis.
Since the rigid-body rotation is considered element-wise (one
rotation matrix per element), finer meshes are needed for adequate
accuracy regardless of the element properties. Inwhat follows, only
the basic equations that describe the element mechanical and
electric fields are given.

2.1. Element geometry and mechanical field

Two coordinate systems are used in the element formulation e

the global (x, y, z) and local (x0, y0, z0) coordinate systems. The local
coordinate system is essential for the description of element ge-
ometry, implementation of kinematics and constitutive equations
but also for the description of the electric field and piezoelectric
coupling. It is defined so as to have one of its axes, the x0-axis,
oriented from element node 1 towards node 2, while the z0-axis is
perpendicular to the element surface, Fig. 1. It takes very basic
vector algebra to define the unit vectors of the local coordinate
system, {ex0}, {ey0} and {ez0} and this is omitted here for the sake of
brevity.

The element uses linear shape functions which are defined in a
manner common for triangular elements. Any point within the
element, with local coordinates x0 and y0, forms 3 sub-triangles in
the element. The shape function of node i at any point (x0, y0) in the
element domain is defined as a ratio of the corresponding sub-
triangle surface area (defined by the point and the remaining two
element nodes) and the element surface area. Hence, the shape
functions for all 3 element nodes read:

N1ðx0; y0Þ ¼
1

2Ae
½ðx01y03 � x03y02Þ þ ðy02 � y03Þx0 þ ðx03 � x02Þy0�

N2ðx0; y0Þ ¼
1

2Ae
½ðx03y01 � x01y03Þ þ ðy03 � y01Þx0 þ ðx01 � x03Þy0�

N3ðx0; y0Þ ¼
1

2Ae
½ðx01y02 � x02y01Þ þ ðy01 � y02Þx0 þ ðx02 � x01Þy0�

(1)

with x0 i and y0 i, i ¼ 1,2,3 denoting the local coordinates of the
element nodes, while Ae is the element surface area. The shell
thickness is assumed to be perpendicular to the mid-surface and
the element geometrywith respect to the local coordinate system is
given as:
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