Accepted Manuscript

Morphological optimization of tensegrity-type metamaterials

D. De Tommasi, G.C. Marano, G. Puglisi, F. Trentadue

PII: \$1359-8368(16)32212-0

DOI: 10.1016/j.compositesb.2016.10.017

Reference: JCOMB 4614

To appear in: Composites Part B

Received Date: 19 August 2016 Revised Date: 4 October 2016 Accepted Date: 6 October 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Morphological optimization of tensegrity-type metamaterials

D. De Tommasi, G.C. Marano, G. Puglisi, F. Trentadue.

Dip. Scienze Ingegneria Civile e Architettura, Politecnico di Bari, Via Re David 200, Bari, Italy

Abstract

We analyze the problem of morphological optimization for metamaterials with tensegrity-type cells. Our mass and morphological optimization scheme is based on both local and global instability analyses. As a meaningful prototypical example we tassellate a slab, subjected to a compression macro-stress orthogonal to its middle plane, into periodic patterns of triangular, square and hexagonal cells.

 $\label{lem:keywords:metamaterials} Keywords: \ \ \mbox{Metamaterials, Morphological Optimization, Tensegrities,} \\ \mbox{Global Stability}$

1. Introduction

Metamaterials are engineered materials, which may exhibit resistance and lightness properties unobserved in natural materials [2], [3]. Strong and lightweight materials are increasingly needed for several advanced applications as those in aerospace and automotive fields. The new proposed materials are typically obtained as periodically patterned low scale structures, whose macroscopic response depends primarily on their topology rather than chemical composition. Thus understanding how the topology of the structured material influences the macroscopic properties is a key-point to propose design criteria for new artificial materials. The interest in this field is also due to other physical properties of the new designed materials, such as optical properties [4], negative material moduli [7] and vanishing macroscopic shear modulus [8].

The present study is based on previous results on the mass optimality of tensegrity structures for compressive load transfer [9], [10]. Here we ana-

Download English Version:

https://daneshyari.com/en/article/5021641

Download Persian Version:

https://daneshyari.com/article/5021641

<u>Daneshyari.com</u>