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By combining the elastic-viscoelastic correspondence principle with the analytical solutions of aniso-
tropic elasticity, the problems of two-dimensional linear anisotropic viscoelastic solids can be solved
directly in the Laplace domain. After getting the solutions in the Laplace domain, their associated so-
lutions in real time domain can be determined by numerical inversion of Laplace transform. Following
this general adopted process, the problems of holes, cracks, or inclusions in two-dimensional linear
anisotropic viscoelastic solids, which appear frequently in polymer matrix composites and cannot be
solved directly by the commonly used commercial finite elements, are solved in this paper. Here, the hole
can be elliptical or polygon-like; the crack can be a single crack, or two collinear cracks, or an interface
crack; and the inclusion can be rigid, elastic or viscoelastic. The loads considered include the uniform
load at infinity, and the point force applied at the arbitrary location. The solution of the point force is
then employed as the fundamental solution of boundary element method which is used for further
comparison of the analytical solutions. The accuracy and efficiency of the presented solutions are
illustrated through four representative numerical examples which involve four isotropic viscoelastic and

two anisotropic viscoelastic materials.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Polymer matrix composites exhibit not only anisotropic (direc-
tional-dependent) but also viscoelastic (time-dependent) behav-
iors. Although there are many different kinds of commercial
software working on the stress analysis of composite materials,
most of them only provide the functions for isotropic elastic,
anisotropic elastic, or isotropic viscoelastic materials, almost none
of them consider the analysis of anisotropic viscoelastic solids.
Additional works are required for some of them.

The elastic-viscoelastic correspondence principle was proposed
long time ago [1]. It states that a problem in linear elasticity is
identical to one in viscoelasticity in the transformed domain.
Although this principle is simple and is applicable for a time-
independent boundary value problem, due to the complexity of
the analytical solutions for the corresponding problems of aniso-
tropic elasticity, its application to the anisotropic viscoelastic solids
is not that direct. And hence, not too many results have been pre-
sented for the anisotropic viscoelastic solids by combining the
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correspondence principle with the analytical solutions of aniso-
tropic elasticity. Most of the successful applications are restricted to
the cases of isotropic viscoelastic solids — homogeneous or
nonhomogeneous, such as [2—6], etc. For the cases of anisotropic
viscoelastic solids, only the application to finite element method
(FEM), boundary element method (BEM) and the problems of
interface corners have been discussed [7—9].

Since several analytical solutions have been presented for the
problems with holes/cracks/inclusions in anisotropic elastic solids
[10], in this paper we try to provide new results of their corre-
sponding anisotropic viscoelastic solids by using the correspon-
dence principle. Through the use of this principle, the well-known
Stroh complex variable formalism in the Laplace domain of visco-
elasticity can be proved to have the same mathematical form as that
of anisotropic elasticity [9]. After getting the displacements, strains
and stresses in the Laplace transform domain from the solutions
obtained by Stroh formalism, their associated solutions in real time
domain can be determined by numerical inversion of Laplace
transform. In this paper Schapery method is adopted to transfer a
series of data in Laplace domain into time domain [11]. To show the
correctness of our semi-analytical solutions, several examples are
illustrated with comparison made by finite element method and
boundary element method. These examples include the two-
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dimensional anisotropic viscoelastic solids containing (1) an ellip-
tical or polygon-like hole, (2) a single crack or two collinear cracks,
(3) an interface crack, and (4) an elliptical or polygon-like inclusion.

2. Linear anisotropic viscoelasticity

In a fixed Cartesian coordinate systemx;,i = 1,2, 3, letu;, ;;, and
g be, respectively, the displacement, stress and strain. The basic
equations of linear anisotropic viscoelasticity can be written as [12].

_1) dew(T) 1

t
75(6) = Ca(ew(®) + [ Cya(t ~ 1) 4T ar,
0

(2.1)
&j(t) = % {uii(0) +uj(0) §,

aij(t) =0, ij,k,1=1,2,3,

in which the repeated indices imply summation, the subscript
comma stands for differentiation, and Cy(t) is the elastic tensor
(also known to as relaxation function) which is assumed to be fully
symmetric. To obtain the elastic tensor, one may perform the
relaxation test, in which the material is subjected to a sudden strain
that is kept constant over the test duration, and the stress is
measured over time. Alternatively, one may perform the creep test
to obtain the compliance tensor (also known as creep function), and
then calculate the elastic tensor through inversion.

Consider two-dimensional deformation and follow the deriva-
tion procedure of Stroh formalism for linear anisotropic elasticity, it
has been proved that the general solution satisfying all the basic
equation (2.1) of linear anisotropic viscoelasticity can be expressed
in matrix form as [9].

u(x,t)

= 2Re{A(t) = df(z,t)

}’
o(x,t) = 2Re{B(t) = df(z,t) }, (2.2a)
where
1 b1 fi(z1,0)
u= uy o, ¢ = 4)2 ) f(Z, t) = f2(227t) s
Us ¢3 f3(23,1)
A(t) =[a;(t) ax(t) as(t)], (2.2b)

B(t) = [by(t) by(t) bs(t) ],
Zk =X1 +,lLkX2, k = ]7273'

In (2.2b), Re stands for the real part, ¢;, i = 1,2, 3 are the stress
functions related to the stresses by

i1 = —¢i2, Oip = di1- (2.3)
we, k =1,2,3 are the material eigenvalues which have been proved
to be complex and independent of time for standard linear visco-
elastic solids, and a,(t) and by (t) are their associated eigenvectors.
fe(z,t), k=1,2,3 are holomorphic complex functions with vari-
ables z;, and t. The operator * denotes the Stieltjes convolution, e.g.,

t
A(t)*df(z, £) = / At — t)df(z,7)
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where the second equality is obtained under the condition that

f(z,t) =0 when t<0.
3. Correspondence principle

Taking the Laplace transform of (2.1) yields

5ij(s) = sCijn(5)2ni(s), &j(s) = % {ﬂij(s) + 1 i(s) }

aijj(s) =0,

(3.1)

in which the over-breve, -, denotes the Laplace transform defined

by
fis) = / Ft)estde=L{f(1)}.

0

(3.2)

Since (3.1) are identical to the basic equations of linear aniso-
tropic elasticity, if the boundary of a viscoelastic body is invariant
with time, the viscoelastic solutions in the Laplace domain can be
obtained directly from the solutions of the corresponding elastic
problems by replacing the elastic stiffness tensor C; with sf,-jkl (s).
This statement is the so-called elastic-viscoelastic correspondence
principle [2], [13—17].

By applying the correspondence principle and Stroh formalism
for two-dimensional linear anisotropic elasticity [10,18], the gen-
eral solutions satisfying the 15 partial differential equation (3.1) can
be written as

Uu(x,s) =2Re{As(s)fs(z,5)}, b(X,s) = 2Re{Bs(s)fs(z,5)},  (3.3a)
where

i | b1 fi(z1.9)
ﬁ = i:lz ) ¢ = Q\Z)Z ) fS(Z7S) = fjg(Zsz) )

i:l3 &)3 f§(2375) (33]3)

As(s) = [aj(s) a3(s) ai(s) ],
Bs(s) = [bi(s) b3(s) b3(5)].
Zy =X +upxa, k=1,2,3.

u and ¢ are, respectively, the vectors of displacements and stress
functions in the Laplace domain. f;(z.s), k=1,2,3 are hol-

omorphic complex functions with variables z, and s. u5, and (a3, b},)
are the material eigenvalues and eigenvectors in the Laplace
domain.

By taking the Laplace transform of (2.2a) and comparing the
results with (3.3a), we get
sig = uf, A=As, B=B,, sf—f; (34)
4. Analytical solutions for problems with holes/cracks/
inclusions

From the correspondence principle stated in the previous sec-
tion, we know that even no analytical solution has been presented
for the problems with holes, cracks and inclusions in anisotropic
viscoelastic materials they can still be solved from their corre-
sponding anisotropic elastic problems if the boundary of a visco-
elastic solid is invariant with time. Since the Stroh formalism in
Laplace domain of viscoelasticity is exactly the same as that of
anisotropic elastic materials, the solutions of the complex function
vector fs(z,s) in the Laplace domain will be exactly the same as
those of anisotropic elastic problems. With this understanding, for
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