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Nowadays, by adding a small amount (about 0.5—5% by weight) of a desired nanomaterial to a matrix
having certain properties one may design a multifunctional nanocomposites with a remarkably
improved macroscopic properties of interest. The capability of conventional continuum theories in
treating the problems of embedded ultra-small inhomogeneity with any of its dimensions comparable to
the characteristic lengths of the involved constituent phases is questioned, mainly, on the grounds of the
accuracy and the size effect. The micromechanical framework based on the Eshelby's ellipsoidal inclusion
theory [1] which has been widely used to estimate the overall behavior of composites falls under the
same category, as is size insensitive. In this work, effort is directed at the prediction of the macroscopic
shear modulus of composites consisting of nano-/micro-size fibers of elliptic cross-sections via couple
stress theory, a physically realistic theory that encompasses the size effect. To this end, the fundamental
equations of couple stress elasticity in elliptic coordinates are derived and several fundamental elliptic
inhomogeneity problems in plane couple stress elasticity are solved analytically. For the purpose of the
application of these results to the study of the effective properties of the composites of interest, Mori and
Tanaka theory [2] is first reformulated in the mathematical framework of couple stress theory. Subse-
quently, the overall shear modulus of solids reinforced by aligned as well as randomly oriented elliptic
nanofibers will be predicted. The influences of the size, shape, orientation, rigidity, and intrinsic length of
the reinforcing nanofibers as well as the effects of the characteristic length of the matrix on the effective
shear modulus of the composite are addressed.
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1. Introduction

Nanomaterials are referred to materials that have at least one
external dimension at the nanoscale, i.e. in the order of approxi-
mately 1nm to 100nm. Generally, thin films or surface coatings as
well as two-dimensional materials, for example graphene and
stanene have one dimension in the nanoscale and their other two
dimensions are extended beyond. Materials with two dimensions
in the nanoscale are categorized as fibers, for example nanowires,
carbon nanotubes, and electrospun fibers. Materials having all
three external dimensions at the nanoscale are generally referred to
as nanoparticles and include quantum dots, colloids, precipitates,
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and nanocrystalline materials. Nanomaterials, due to their large
surface-to-volume ratio and quantum effects can significantly
enhance or alter such properties as reactivity, strength, optical,
magnetic, and electrical characteristics. Nowadays, multifunctional
nanocomposites of desired mechanical, optical, electrical, and
magnetic properties may be achieved through incorporation of
nanosize additives of specific characteristics into a matrix of stan-
dard material. For instance, addition of carbon fibers and bundles of
multi-walled carbon nanotubes to polymers results in composites
which are used to control or enhance conductivity. Some other
types of nanomaterials with applications in nanocomposite tech-
nology are minerals, exfoliated clay stacks, and electrospun fibers.
For example, plastics and nanosized flakes of clay are incorporated
in fabricating car bumpers. For resistance to wear and damage as
well as heat resistance purposes as in engines, appropriate nano-
composites are designed. It is noteworthy to point out that nor-
mally addition of only 0.5 to 5% by weight of nanomaterials is quite
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effective. Properties of the matrix material in the neighborhood of
the reinforcements are significantly altered; properties vary
continuously from that of the reinforcement at the matrix-
reinforcement interface into the bulk of the matrix. Such re-
inforcements, due to their large surface-to-volume ratio bond to
the surrounding matrix differently than the traditional additives. A
principle outcome of the large amount of reinforcement-matrix
interface area, which is typically an order of magnitude larger
than that of ordinary composites, is that a rather small amount of
nanosized reinforcement can lead to a remarkable effect on the
macroscopic properties of the composite. Another feature of in-
terest is that due to their extreme smallness, they are basically free
of any defects and, moreover, can significantly strengthen materials
by preventing free movements of matrix dislocations. It has been
observed that some nanocomposites are 1000 times tougher than
the bulk matrix materials. In the literature, carbon nanotube and
graphene platelet have been used extensively as enrichment to
obtain different types of composites with enhanced mechanical
properties; see, for example, [3—6]. Lau et al. [7] have given a
critical review on the interfacial bonding strength between nano-
tube enrichment and polymer matrix.

An immediate concern is to develop a method that is capable of
estimating certain desired macroscopic mechanical properties of
nanocomposites based on the relevant properties of their corre-
sponding constituents with the dimensional spectrum ranging
from a few nanometers to several millimeters. In the literature, the
concept of size effect has been mainly associated to the effect of the
change in sample size rather than the change in dimensions of its
constituents. For instance, Lam et al. [8] have carried out some
experimentations on the bending of micro-beams with thicknesses
in the range of 20 — 115y m , and emphasized that even for fixed
length to thickness ratios, the deflections of the beams are different.
While classical theory yields the same deflection as long as the ratio
is fixed. They showed that, regardless of this ratio, nonclassical
strain gradient theory leads to results that, in contrast to classical
theory, are influenced by the size change and correspond to the
experimental observations. Recently, the behavior of nanobeams
has been examined using different augmented continuum theories.
For example, Shodja et al. [9] obtained the exact closed-form so-
lutions of the nanosized Bernoulli-Euler beam in the mathematical
frameworks of first and second strain gradient theories. Barretta
et al. [10] provided an Eringen-like model for Timoshenko nano-
beams. Barretta et al. [11] introduced the first gradients of the axial
and shear strain into the nonlocal theory of Eringen and Edelen
[12], and subsequently treated functionally graded Timoshenko
nanobeams. Torsional analysis of composite nanobeams, due to
their important technological applications, has also increasingly
received much attention in the past decade. For example, Pahlevani
and Shodja [13] studied the surface and interface effects on torsion
of eccentrically two-phase fcc circular nanorods by employing
surface elasticity theory. Apuzzo et al. [14] proposed an enhanced
nonlocal formulation for the torsional analysis of nanobeams. Zhu
et al. [15] experimentation on fivefold twinned Ag nanowires with
diameters ranging from 34 to 130nm reveals that Young's modulus,
yield strength, and ultimate tensile strength of the nanowire in-
creases with decreasing of the diameter. From a different angle, the
phenomenon of the size effect can be associated with the micro-
structure/nanostructure of the material. In fact, the influence of the
microstructure/nanostructure of different materials such as nano-
crystalline materials and particulate-reinforced metal matrix
composites has been confirmed experimentally by Kamat et al. [16],
Hahn and Padmanabhan [17], Zhu et al. [18], and Zhong [19]. A
further review of the experimental studies about the role of the size
effect on the macroscopic mechanical properties of solids are given
by Hemker and Sharpe Jr [20] and Greer and De Hosson [21]. In the

realm of traditional continuum theories, capture of the size effect of
the enrichments on the macroscopic behavior of solids is not
possible. As far as this shortcoming is of concern, the
micromechanical-based studies of the overall behavior of com-
posites which utilize Eshelby's theory are no exceptions. In the
pioneering work of Eshelby [1] the strain field, e for the interior
points of an ellipsoidal inclusion, ©Q with a prescribed uniform
eigenstrain field, £* is uniform and is given by e = S : ¢* in which S is
Eshelby's tensor. Owing to the fact that Eshelby's tensor, S = S(C; Q)
depends only on the shape of Q and its elastic moduli tensor, C, the
induced strain and stress fields inside Q are independent of the size
of Q. As it will be seen, this dilemma is circumvented in the context
of the present work.

Previously, numerous investigators have utilized Eshelby's the-
ory and provided commendable estimates of the effective elastic
behavior of composites. For example, Nemat-Nasser and Taya [22],
Nemat-Nasser et al. [23], and Iwakuma and Nemat-Nasser [24]
employed Eshelby's theory to predict the effective moduli of
solids containing nondilute distribution of noncoated ellipsoidal
particles with the periodic microstructures. Furthermore, Shodja
and Roumi [25,26] using Eshelby's equivalent inclusion method for
multiinhomogeneities [27] presented a theory for the prediction of
the overall properties of composites with the periodic distribution
of multiphase reinforcements. A fairly thorough literature on this
topic as well as other studies which are based on the size-
independent Eshelby's inclusion problem is available in the re-
view papers by Mura [28], Mura et al. [29], and Zhou et al. [30]. A
critical shortcoming of such classical continuum approaches as
Eshelby's, in addition to size independency, is in their inadequacy
in providing a reasonably accurate solution in the vicinity of small
defects and inhomogeneities. It is well-known that formulations
within the mathematical framework of classical elasticity are
bound to wave lengths and bodily dimensions large enough
compared with the internal length-scales of the medium of inter-
est. The early work of Cauchy [31] on the development of theory of
elasticity suggested that stress at a given field point not only de-
pends on the displacement of the point but also is influenced by the
displacements of those in its neighborhood. Incorporation of this
notion required resort to higher order continuum theories which
can account for the discrete nature of materials. Based on this
school of thought, strain gradient theories were developed and
evolved in the literature. Consideration of the mathematical
framework of a strain gradient theory, in general, leads to the
introduction of one or more internal length scales which are
inherently accountable for reflecting the discrete nature of the
elastic bodies of interest. For example, for an isotropic elastic solid,
formulation within first strain gradient theory as presented by
Mindlin and Eshel [32], in addition to the two independent tradi-
tional Lame constants, involves two characteristic lengths, enabling
the enhancement of the solution in the neighborhood of defects
and inhomogeneities as well as accommodation for the size effect.
Toupin and Gazis [33] in their study on surface effects and initial
stress in continuum and lattice models of elastic crystals showed
that the continuum description within first strain gradient theory is
in agreement with the lattice model in which the nearest and next
nearest interatomic interactions is accounted for.

The desire to increase the accuracy of solution in the vicinity of
defects and inhomogeneities through accounting for the discrete
nature and the structure of the atomic arrangements of matters,
turned the attention of many prominent investigators towards the
proposition of various higher order continuum theories, primarily,
during the time period of about 1960 — 1975. For a fairly complete
account of the historical development of the higher order contin-
uum theories during the mentioned period, the readers may refer
to the Introduction section in the recent work of Shodja et al. [34].



Download English Version:

https://daneshyari.com/en/article/5021750

Download Persian Version:

https://daneshyari.com/article/5021750

Daneshyari.com


https://daneshyari.com/en/article/5021750
https://daneshyari.com/article/5021750
https://daneshyari.com/

