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a b s t r a c t

We show an implementation of density matrix embedding theory (DMET) for the spin lattice of infinite
size. It is indeed a special form of hierarchical mean-field (HMF) theory. In the method, we divide the
lattice into a small part and a large part. View the small part as an impurity, embedding in the large part,
which is viewed as the environment. We deal the impurity with a high accuracy method. But treat the
environment with a low-level method: the states of the environment nearby the impurity are expressed
by a set of multiple block product states, while the distant parts are treated by mean-field consideration.
Our method allows for the computation of the ground state of the infinite two-dimensional quantum
spin systems. In the text, we take the frustrated Heisenberg model as an example to test our method. The
ground state energy we calculated can reach a high accuracy. We also calculate the magnetization, and
the fidelity to study the quantum phase transitions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the new DMET [1–5] provides a more simple way to
deal with the quantummany-body systems. This new method has
been successfully applied to solve the ground state of Hubbard
model. The basic physics of DMET is analogous to the dynamical
mean-field theory (DMFT) [6–8], which decomposes the system
into two parts: the impurity and the environment. The impurity
part of the system can be treated exactly, and the remaining part,
i.e., environment is treated approximately. In DMFT, the observ-
ables related only to the impurity part, such as ground state energy
per site, have high accuracy. TheDMET reproduces the physics idea
of the DMFT in a wavefunction method, which consider the impu-
rity as embedding in a single particle mean-field environment. It
calculates the densitymatrix, instead of the Green function. For the
ground state, thismethod can reduce the cost substantially. Amod-
ification of the original DMET, called Cluster-DEMT [9] method, is
capable to handle spin model with high accuracy results.

In numerical calculations, the original DMETuses a larger lattice
to replace an infinite one. In our work, we develop a new way
to handle the ground state of the real infinite lattice, which is a
new implementation of the DMET and is inspired by the work of
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Ref. [9]. Asmentioned in that paper,when solving the square lattice
spin system with DMET, the impurity has strong correlation with
the nearby environment, while the effect of distant parts of the
environment is relatively weak (just a mean-field environment).
Thus, we think of using the method of HMF [10] to implement the
DMET: solve the impurity and nearby surroundings with a high-
accuracy method, and treat the distant environment by mean-
field consideration. In other words, we reformulate the DMET
into the form of the HMF. Specifically, we consider the impurity
and the surrounding environment as a superblock, corresponding
to the superplaquette of the HMF, and identify such superblock
as the relevant elementary degree of freedom [11,12]. Next we
reformulate the variational wavefunction of this superblock in the
spirit of the DMET. This is different to the HMF, in which the
superblock state is exact. Then, apply a translationally invariant
variational ansatz to the ground state of the entire lattice, the same
as the HMF does. By this way, our method gets rid of the influence
of the scaling effect of the lattice in the numerical calculations.
The observables referring to the impurity are calculated with the
reduced density matrix of the impurity. And the results of these
observables can be extended to the infinite lattice according to
the translational symmetry of the lattice. Compared with Cluster-
DMET, we obtain the results which are more suitable to represent
that of an infinite lattice. Moreover, we can reach high accuracy
results at a mean-field computation cost.

In this paper, we show how the DMET works in the frame-
work of the HMF, and analyze the properties of our algorithm.
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The Heisenberg model is the typical model to describe the quan-
tum spin systems, which is studied by many methods, such as the
quantum Monte Carlo (QMC) [13], couple cluster method (CCM)
[14,15], variational method [16], Green’s function method [17].
Aiming at illustrating the idea of our method, we use the normal
J1 − J2 model (frustrated Heisenberg model) as an example. We
primarily choose the 6× 6 superblock as the elementary degree of
freedom,which is a symmetry-preserving cluster (preserves the C4
symmetry). For the environment states of this superblock, we use
the multiple block product states to replace the single block prod-
uct state of the Cluster-DMET, which can make an improvement
to the ground state energy in the intermediate region. Meanwhile,
we also show the ground state energy with the case of choosing
the superblock size as 4 × 4. It can be directly calculated using the
ground state obtained by the exact HMF [10] or our approximate
HMF approach [18].We compare our ground state energy to that of
other methods, such as Cluster-DMET, CCM [14,15] and QMC [13].
Besides, we also use our method to investigate the quantum phase
transition of the J1−J2 model. Our resultsmanifest that themagne-
tization disorder region is 0.41 ≤ J2/J1 ≤ 0.63. Particularly,we use
the reduced fidelity to observe the phase transition of this model,
which can detect the position of transition points sensitively. Our
article is organized as follows. In Section 2, we give the analytical
derivation of our method. Section 3 shows our numerical results.

2. Numerical methods

We take the spin-1/2 frustrated Heisenberg antiferromagnetic
(HAF) J1− J2 model defined on a square latticemodel to discuss our
methods. The Hamiltonian reads

H = J1

⟨i,j⟩

Si · Sj + J2

⟨⟨i,j⟩⟩

Si · Sj, (1)

where J1 is the nearest-neighbor (NN) and J2 is the next-nearest-
neighbor (NNN) antiferromagnetic interactions. In recent several
decades, the ground state of this model has been investigated by
using many numerical methods [10,15,17,19–24]. Thus, there are
reliable data for comparison.

We divide the lattice into two parts: A and B. Part A is referred
as an impurity in DMFT, and has a small number of degrees
of freedom. Part B is the remaining part of the lattice, which
can be viewed as the environment. According to the Schmidt
decomposition [25,26], the ground state |Ψ ⟩ of H can be equally
expressed as

|Ψ ⟩ =

T
τ

λτ |ατ ⟩ |βτ ⟩ , (2)

where the |ατ ⟩ and |βτ ⟩ are separately the states in the Hilbert
space of the impurity A and environment B, and T is the dimension
of theHilbert space of A. Follow from this equation, the observables
only containing the impurity’s degrees of freedom can be obtained
from the reduced density matrix of the impurity A. Since it is
hard to get the exact |Ψ ⟩, the DMET provides an approximate
method, namely, replace the exact environment states |βτ ⟩ with
an approximate states

β̃τ


. In the original DMET [1], the impurity

is considered to be embedded in a single particle mean-field
environment, namely the states

β̃τ


are single particle mean-field

states. By direct using of this method on calculating the J1 − J2
model, however, it is unable to obtain the high accuracy results.
The Cluster-DMET makes a modification on the original DMET. It
expresses the approximate wavefunction of the lattice as

Ψ̃ 
=T

τ λτ |ατ ⟩

β̃τ


BPS

, where the
β̃τ


BPS

is a block product state, i.e.,β̃τ


BPS

=


i φ
i
τ with the φi

τ being the state of a small block. We

see that the approximate environment state in Cluster-DMET [9] is
expressed by the T blockproduct states

β̃1


BPS

, . . . ,

β̃T


BPS

, which
is beyond the simple single particle mean-field environment. In
this work, we make further improvement for the environment
state based on this block product states environment. We replace
the state |βτ ⟩ of Eq. (2) with a superposition of K block product
states, namely with a superposition of multiple block product
states. Our approximate wavefunction

Ψ̃ 
takes the form

Ψ̃ 
=

T
τ

|ατ ⟩


λ1

τ

β̃τ

1
BPS

+ · · · + λK
τ

β̃τ

K
BPS


, (3)

where a state
β̃τ

k
BPS

(k = 1, . . . , K) is a block product state, and

the λk
τ are the superposition coefficients. In the case of K = 1,

our state is equivalent to that in Ref. [9]. And the accuracy of the
environment B states increases with increasing K .

In Ref. [9], by analyzing the environment states
β̃1


BPS

, . . . ,β̃T


BPS

, it finds that those states of the distant parts of the
environment B are close to the mean-field result. Thus, we can
directly treat the distant parts of the environment at a same
mean-field level. Simultaneously,wemake an improvement on the
treatment of the near parts of the environment. This technique can
be implementedwith theHMFapproach.We consider the impurity
and the surrounding sites which cannot be treated with the mean-
field as a superblock, and choose it as our elementary degree of
freedom. The wavefunction of this superblock is written in the
form of Eq. (3), and it is invariant under translations. We apply the
translationally invariant conditions to get the entire lattice state
|Φ⟩, which is expressed as |Φ⟩ =


b

Ψ̃superblock

b, where b is

the index of superblocks. It is apparent that our wavefunction is
a formulation of HMF. Thus, our method can be applied to carry
the numerical calculation on the infinite lattice.

In the concrete calculation for the J1 − J2 model in Ref. [9], it
shows that only two nearby sites around a 2 × 2 impurity are
not mean-field environment. So we choose a 6 × 6 superblock
as the superblock of the HMF. Symmetric covering of the square
lattice with this superblock can reproduce the original Bravais
lattice, and more the C4 lattice symmetry is also preserved. We
use this 6 × 6 superblock to illustrate our method. First, we divide
the superblock into nine 2 × 2 clusters (small blocks). Consider
the center 2 × 2 cluster as the impurity A, and the basis states
of this impurity are |ατ ⟩. The remaining eight clusters are the
surrounding environment of this impurity. For this environment,

we have
β̃τ

k
BPS

= φ1
τ ,k · · · φ8

τ ,k, where the states φ1
τ ,k, . . . , φ

8
τ ,k

correspond to the eight clusters, and the stateφi
τ ,k = c i,0τ ,k |↓↓↓↓⟩+

· · · + c i,15τ ,k |↑↑↑↑⟩. Then, according to Eq. (3), we can easily get
the state

Ψ̃6×6

of the 6 × 6 superblock. For such superblock, the

2 × 2 impurity states are exact, and the states of the surrounding
environment (eight 2 × 2 clusters) are treated by K multiple
block product states. Finally, the wavefunction |Φ⟩ of the entire
lattice is the products of the 6 × 6 superblock states, with each
superblock having the same wavefunction. Actually, in the case
of smaller superblocks, such as 4 × 4 superblock, one can easily
treat it exactly with the HMF approach. There is no need for using
the approximation as mentioned above. For using the Schmidt
decomposition, we can decompose the superblock state obtained
by the HMF 4 × 4 into the form of DMET.

We optimize our state |Φ⟩ to the ground state with the method
in Ref. [18], which has been used to optimize the state given by
our approximate HMF method. In a word, this optimizing method
is to optimize the state |Φ⟩ with the matching pursuit (MP)
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