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A finite difference scheme for the numerical treatment of the von Neumann equation for the (2 +
1)D Dirac Hamiltonian is presented. It is based on a sequential left-right (ket-bra) application of a
staggered space-time scheme for the pure-state Dirac equation and offers a numerical treatment of
the general mixed-state dynamics of an isolated quantum system within the von Neumann equation.
Thereby this direct scheme inherits all the favorable features of the finite-difference scheme for the pure-
state Dirac equation, such as the single-cone energy-momentum dispersion, convergence conditions,
and scaling behavior. A conserved functional is identified. Moreover this scheme is shown to conserve
both Hermiticity and positivity. Numerical tests comprise a numerical analysis of stability, as well as
the simulation of a mixed-state time-evolution of Gaussian wave functions, illustrating Zitterbewegung
and transverse current oscillations. Imaginary-potential absorbing boundary conditions and parameters

Staggered grid
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which pertain to topological insulator surface states were used in the numerical simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction
1.1. The Dirac equation and single-cone numerical schemes

The Dirac equation is the fundamental wave equation for
relativistic fermions and has been employed in practical all fields
of theoretical physics, from the standard model of elementary
particle physics, atomic, molecular, and condensed-matter physics
to astrophysics and cosmology [1-5]. Recent developments in
condensed matter physics, in particular, have renewed the interest
in (2 4+ 1)D versions (2 space- and one time-coordinates) of the
Dirac equation to describe the low-energy spectrum of graphene
and surface-states of topological insulators (TIs) [6-11].

In the numerical modeling of Dirac fermions on a lattice, for
example in lattice quantum-chromodynamics (QCD), the effect
of fermion doubling has caused considerable difficulties [12,13].
It arises from the implementation of first-order derivatives by
finite-difference approximations using twice the lattice constant.
Recently we have identified a class of staggered grids on which
fermion doubling can be avoided in arbitrary space dimensions,
with explicit schemes given for the (1+ 1)D, (24 1)D,and (34 1)D
case [14,15]. To our knowledge this is the first class of finite-
difference schemes for the Dirac operator which displays a single
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energy-momentum cone only and is explicit (local), i.e. can be ex-
ecuted locally mesh-point by mesh-point. The scheme scales lin-
early with the number of grid points and allows a gauge-invariant
formulation of electromagnetic fields on the lattice. Moreover, the
underlying grid can be used in any space-time formulation involv-
ing the Dirac operator, such as density matrix and Green’s function
approaches, while yielding a single Dirac cone.

In this work we extend the single-cone scheme for the
(2 + 1)D time-dependent Dirac equation for pure states to a
numerical scheme for the mixed-state time-evolution under the
Dirac Hamiltonian H in (2 4+ 1)D which is described by the von-
Neumann equation

ihp =Hp — pH = [H, p]. (1)

It lends itself to extensions which describe open and dissipative
quantum systems, such as the simulation of quantum transport on
TI surfaces at energies near the Dirac point [16,17]. The scheme
to be presented below utilizes the staggered grid of Ref. [15] to
define centered differences over a single lattice spacing, thereby
eliminating the very source for fermion doubling from the start. It is
the adoption of R. Hammer's staggered grid and the representation
of partial derivatives using single lattice spacings which ensures a
single-cone dispersion on the grid and links this work to Ref. [15].
In Sections 1.2 and 1.3, respectively, we review the continuum
space-time representation of the Dirac von Neumann equation
and select the placement of the density matrix components on a
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staggered grid which is the key for eliminating fermion doubling.
In Section 2 we formulate the ket-bra numerical scheme and prove
its main properties. It treats the time derivative of the density
operator p within the product rule as indicated by the commutator
on the r.hs. of Eq. (1): apply H from the left and therewith
propagate the ket in time, apply H from the right and therewith
propagate the bra in time, and form the difference. In Section 3 we
explore the trace conservation properties numerically and provide
elementary examples for mixed-state dynamics of Dirac fermions
for an illustration of the scheme.

1.2. The continuum formulation of the von Neumann equation for the
(2 + 1)D Dirac Hamiltonian

We consider the effective model Hamiltonian which accounts
for the energy spectrum of TI surface states near the Dirac
point [7]'

H=v(o xP)|,+m(X,Y, )0, + V(X, Y, )1,. )

Here, v,0;,i = X,y,z, and P, respectively, denote the Fermi
velocity, the Pauli matrices [2], and the momentum operator. 1,
is the 2 x 2 unit matrix. m(X, Y, t) and V(X, Y, t), respectively,
denote the position- (X, Y) and time- (t) dependent “mass” and
scalar potential term. Using the abbreviation?

dx = v (P, £iPy)
and (omitting space-time arguments)
myey=V+m

this Hamilton operator takes the form of a 2 x 2 matrix

_(my Oy
(1)

Inserted into the von Neumann equation (1) one obtains a set of
first-order partial differential equations in space and time for the
density operator elements p;;, conveniently written as the 2 x 2
matrix identity (see Box I).

Note that, as in the original von Neumann equation, Hamilton
matrix operator elements to the right of the density operator
matrix elements act to the left (and vice versa). The two-
component nature of the spin-1/2 Dirac fermion suggests this 2 x 2
form. Choosing a continuous space representation for the orbital
degrees of freedom one arrives at the equation given in Box II.

Here we omit the time variable t, common to all terms, for
brevity, and use the real-space versions of the abbreviations
defined above, i.e.,

@:?@im, %:?@i@q

and (including arguments)
my(x,y,t) =V, y,t) mx,y,t).
Note that in the real-space representation we have
(Wl (Py £iPy) | x,y) = ((Py FiPx) % | X, )
= (x| (Py FiP) )" = —3:%(x, y)".

1.3. Placement onto the space-time grid

The task at hand now is to develop a space-time finite-
difference approximation to Eq. (4) which avoids fermion doubling.

1 Note that the TI representation differs from the standard representation used
in Ref. [15], however, simply shifting Py — Py and P, — —P, converts the latter to
the former.

2 For now, the electromagnetic vector potential is set equal to zero.
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Fig. 1. (Color online) Sketch of the staggered grid needed to propagate a two-
component spinor ¥ by one time step A;. Placing upper and lower components

. . . i1 ; .

onto the adjacent time sheets, respectively, t*~2 and t/ allows the propagation
to the next pair of time sheets via spatial derivatives, represented by single lattice
spacings (A, and Ay), in two steps: first the upper spinor component from subgrid

91'10—% to gj{”f, then the lower spinor component from subgrid 912" to 9,1;“.

This is achieved by using the staggered grid introduced in an
earlier paper to accommodate the real-space density matrix in
which upper and lower spinor component(s) are placed on two
adjacent time-sheets [15]. Fig. 1 gives a sketch of the grid and the
propagation by one time step.

The proper implementation is found by inspection of the
density operator for a pure state spinor. In (24 1)D one has a pure-
state ket [¥) = (g;)and the corresponding ket-bra projector for
the representation as a density operator

*
% 1/f2 ) . (5)

1/f1 * * 1/f1 I/f1>k
p=towi= ()i i) =yt v
In general, the density operator being Hermitian, trace-one, and
positive may be cast into the form [16]

p= W (¥, (6)
k

where |¥) are wave functions normalized to one, and 0 < y;, <
1, v« € Rwith Zk =1

This shows that the Pauli indices of p, 1 and 2 respectively,
take the face-centered rectangular ¥1-grid ($1) and v,-grid ($,)
position. For a single-cone representation the latter are [15]

Y1() withj € 1 = {Gi-dy-do — 1/2), Gx+ 1/2.Jy
+ 1/2,jo—1/2) | j, € Z,v =, y, 0},

va() withj € §o = {Gx+1/2.4y.Jo)s Giodiy +1/2.50) |
jv€Z,v=xy,0}.

Here the time index is labeled o. Note that, for given time, ¥,
and 1, are placed onto adjacent time sheets, respectively, jo —
1/2 and j,. Each time sheet contains a rectangular face-centered
spatial grid, symmetrically staggered relative to the ones on the
two adjacent time sheets, such that symmetric difference quotients
replace the respective partial derivatives on the grid, as sketched
in Fig. 1. The grid spacings are denoted by Ay, Ay, and A, = vA;.
We also introduce the associated grids

9_’1 = {(ix’jwjo)a (jX + 1/27jy + 1/27j0) |jV € Za V= X,y, 0} ’
9_»2 = {(lx + 1/21jy,jo + 1/2), (im].y + 1/2,jo + ]/2) |
jv €Z,v=2xy,0}.
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