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a b s t r a c t

We consider a quintic polynomial eigenvalue problem arising from the finite volume discretization of a
quantumdot simulation problem. The problem is solved by the Jacobi–Davidson (JD) algorithm. Our focus
is on how to achieve the quadratic convergence of JD in a way that is not only efficient but also scalable
when the number of processor cores is large. For this purpose, we develop a projected two-level Schwarz
preconditioned JD algorithm that exploits multilevel domain decomposition techniques. The pyramidal
quantumdot calculation is carefully studied to illustrate the efficiency of the proposedmethod. Numerical
experiments confirm that the proposed method has a good scalability for problems with hundreds of
millions of unknowns on a parallel computer with more than 10,000 processor cores.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Polynomial eigenvalue problems are of great interest because
there are many important applications in science and engineering,
such as the stability analysis in fluidmechanics, the vibration prob-
lem in solid mechanics, the quantum dot problem in nanotechnol-
ogy; see [1–7] and references therein. The JD algorithm, originally
proposed by Sleijpen and Van der Vorst for solving algebraic lin-
ear eigenvalue problems [8,9], has been shown to be effective for
polynomial eigenvalue problems [1,2,10,11], especially for the case
when several interior eigenvalues are of interest. The JD algorithm
belongs to a class of subspace iterative methods, which consists
of two key steps: first increase the search space by adding a new
basis vector and then extract the approximate eigenpair from the
search space through a Rayleigh–Ritz procedure. To obtain a new
basis vector for the search space, at each JD iteration, one needs to
solve inexactly a large sparse linear system of equations, which is
referred to as the correction equation, by a preconditioned Krylov
subspace type method, such as GMRES or CG methods [12].

The numerical experiences suggest that the robustness and
the efficiency of the JD algorithm depend on the following three
factors: (1) the initial search space, (2) the Ritz pair selection
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strategy, and (3) the solution quality of the correction equation.
Similar to Newton-type methods for solving nonlinear systems,
the JD algorithm is a locally convergent iterative method, i.e., if
the initial guess is not close enough to the exact solution, the
convergence often exhibits some stagnation behavior, or even
worse, is not achieved. One important feature of the JD algorithm
is that at each JD iteration, only mild solution accuracy of the
correction equation is required. Several recent publications were
related to the correction equation solvers. Feng [6] applied a
multilevel JD method for the generalized eigenvalue problem
with application in the finite element analysis of structural
dynamic problems. A multigrid-type preconditioner was used in
conjugation with FGMRES as the correction equation solver. The
incomplete Cholesky factorization without fill-ins was employed
as the pre- and post-smoothers and the coarse grid problem was
solved by a direct method. Arbenz et al. [5] proposed a hybrid
preconditioner combining a hierarchical basis preconditioner and
an algebraic multigrid preconditioner for the correction equation
in the JD algorithm for solving symmetric generalized Maxwell
eigenvalue problem; they reported good parallel scalability using
up to 16 processors.

The aim of the paper is to develop and study a two-level
JD algorithm for the large sparse polynomial PDE eigenvalue
problems and its applications in quantum dot simulations. The
concept of two-level approach fits in the JD algorithm in three
aspects. The first idea is to use a coarse mesh to construct the
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Fig. 1. Structure of a pyramidal quantum dot embedded in a cuboid.

initial vector in the search space since for many applications, the
smooth eigenvector corresponding to the low frequency can be
well represented by the coarse mesh solution. The second idea is
to use the coarse solution as a guideline for selecting a proper Ritz-
pair. For example [2], a similarity measure was applied using the
coarse eigenvalues and eigenvectors as a reference to avoid picking
un-physical spurious root introduced during the Raleigh–Ritz
projection procedure. The third idea is in the construction of
the preconditioner using the domain decomposition method for
the Krylov subspace iterative-type correction equation solver.
Our proposed two-level preconditioner is based on the Schwarz
framework [13–15], which has a long successful history for linear
elliptic PDEs.We also compare numerically the proposed approach
with a one-level method, and a popular two-level orthogonal
Arnoldi (TOAR) method using PETSc [16] and SLEPc [17]. Our
approach outperforms both of them in terms of the total compute
time, and the strong scalability on a machine with a large number
of processor cores.

The rest of the paper is organized as follows. Section 2 briefly
introduces the pyramidal quantum dot problem. In Section 3,
we propose a projected two-level domain decomposition based
Jacobi–Davidson algorithm. Numerical results of the proposed
algorithm and comparison with other methods are reported in
Section 4. Some final remarks are given in Section 5.

2. Pyramidal quantum dot problem

We consider polynomial eigenvalue problems arising from
quantum dot (QD) simulations. An example of QD is a pyramid dot
embedded in a cuboid as shown in Fig. 1. Due to the confinement
effect, the pyramidal quantum dot has discrete energy states. This
type of quantum dot can be produced by a few manufacturing
procedures and has many applications, such as lasers and single-
electron devices [18].

The central task is to compute some energy states and
their corresponding wave functions, by solving an eigenvalue
problem [1,3,4,18–22]. The quantum states of a pyramidal
quantum dot with a single electron can be described by the time-
independent 3D Schrödinger equation

−∇ ·


h̄2

2m(r, λ)
∇u

+ V (r)u = λu, (1)

on the domain Ω , where λ is called an energy state or eigenvalue,
and u is the corresponding wave function or eigenvector. In (1), h̄
is the reduced Planck constant, r is the space variable, m(r, λ) is
the effective electron mass, and V (r) is the confinement potential.
Taking the effect of the spin–orbit splitting into account, the
effective mass model

m(r, λ) =


m1(λ) in the pyramid
m2(λ) in the cuboid

V (r) =

V1 in the pyramid
V2 in the cuboid

can be derived from the eight-band k · p analysis and the effective
mass theory [3,22]. More precisely,
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λ+ ℓi − Vi + δi


, i = 1, 2, (2)

where Pi, ℓi and δi are the momentum, main energy gap and
spin–orbit splitting corresponding to the pyramid and the cuboid,
respectively.

Since the pyramidal QD is a heterostructure, the Ben Daniel–
Duke condition [1,3] is imposed on the interface of the two
materials:

1
m(r, λ)

∂u
∂n


∂D−

=


1

m(r, λ)

∂u
∂n


∂D+

(3)

where D denotes the domain of the pyramid dot and n is the unit
outward normal for each surface of ∂D. Since the corresponding
wave functions decay exponentially outside the pyramid dot, the
homogeneous Dirichlet boundary condition

u = 0 (4)

is imposed on the boundary of the cuboid ∂Ω .
A cell-centered second-order finite volume method [3] on a

uniform mesh in Cartesian coordinates is applied to discretize the
Schrödinger equation with non-parabolic effective mass model.
With this finite volume method, the interface condition (3) is
applied implicitly. The resulting system is a polynomial eigenvalue
problem

(λ5A5 + λ4A4 + λ3A3 + λ2A2 + λA1 + A0)x = 0, (5)

where λ ∈ C, x ∈ CN , Ai ∈ RN×N , and N is the total number
of unknowns. The matrices A5 and A4 are diagonal, and all other
matrices are nonsymmetric.

3. Jacobi–Davidson algorithm with a projected two-level
Schwarz preconditioner for the correction equation

We begin with some notations. For given Ai ∈ CN×N , i =
0, 1, . . . ,m, such that their null spaces only have a trivial inter-
section, we define

Aφ =

m
i=0

φiAi

as a matrix polynomial of φ ∈ C. If there exist λ ∈ C and nonzero
x ∈ CN such that

Aλx = 0, (6)

then λ is called an eigenvalue of Aφ and x is the right eigenvector
of Aφ associated with the eigenvalue λ. In general, (6) is referred
to as the polynomial eigenvalue problem of degreem.

The Jacobi–Davidson algorithm is a powerful approach for
solving the polynomial eigenvalue problem (6). The details of the
JD algorithm are summarized in Algorithm 1. Since the correction
equation is the most expensive part of computation, the parallel
performance of the JD algorithm is determined mostly by how the
correction equation is solved. We introduce a projected two-level
Schwarz preconditioner that improves greatly the convergence of
the correction equation solver and is scalable.

In Algorithm 1, Step 3 implies a Galerkin condition that r
is orthogonal to the subspace span{V }. At each JD iteration, the
projected polynomial eigenproblem is solved by the QZ method
with linearization, see [1,17] for details. Then φ is chosen to be the
desired eigenvalue that is closest to the initial guess eigenvalue
θ , that is, |φ − θ | is minimum among all the eigenvalues of the
projected polynomial eigenproblem. If the accuracy of (φ, u) is
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