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a b s t r a c t

The conservation of mass is a common issue with multiphase fluid simulations. In this work a novel
projection method is presented which conserves mass both locally and globally. The fluid pressure is
augmented with a time-varying component which accounts for any global mass change. The resulting
system of equations is solved using an efficient Schur-complement method. Using the proposed method
four numerical examples are performed: the evolution of a static bubble, the rise of a bubble, the breakup
of a thin fluid thread, and the extension of a droplet in shear flow. The method is capable of conserving
the mass even in situations with morphological changes such as droplet breakup.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A wide variety of techniques have been proposed to model
multiphase fluid systems with incompressible, immiscible fluids.
These include explicit front-tracking techniques [1,2], the volume-
of-fluid method [3,4], the phase-field method [5–7], and the level
set method [8,9]. A constant challenge in each of these tech-
niques is the conservation of mass during the course of the sim-
ulation. Each of these methods handles this challenge differently.
For example, the volume-of-fluid methods have excellent mass
conservation properties [10] at the expense of requiring complex
heuristic interface reconstructions techniques to calculate geomet-
ric quantities such as curvature [11–13].

Unfortunately, there are many physical systems where high
accuracy of geometric quantities is required. One example is
models of liposome vesicles where interfacial forces depend on
high order derivatives of the interface’s curvature [14–16]. Unlike
volume-of-fluid techniques, front tracking, phase-field, and level-
set methods are able to provide higher geometric accuracy. This
accuracy is obtained at the expense of natural volume conservation
and thus special care must be taken to ensure that mass does not
change over the course of a simulation.

There have been numerous attempts to improve the mass
conservation of suchmethods. For example, level setmethods have
been adjusted by Lagrangian particles which are used to correct
the level set function [17,18] or level sets have been combined
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with volume of fluidmethods [19]. Other simply shift the interface
function to match the volume constraint [20].

The major issue with these types of corrections is that the
interface becomes decoupled from the underlying flow field. As an
example consider an interface on a uniform Cartesian grid, Fig. 1.
The interface begins on the left side and the underlying fluid flow-
field dictates that it should move to the right one grid spacing.
After this time step it is determined that errors in the simulation
resulted in a mass gain. A simple and often-used correction is to
simply move the interface to obtain mass conservation. In this
case the effect is the interface will not move the full amount
that the underlying flow field dictates. The movement of the
interface and the underlying flow field have become decoupled.
Any externally applied correction for front-tracking, phase-field or
level set methods will demonstrate similar behavior.

In this manuscript a different approach is taken. Instead of
adjusting the interface to achieve mass conservation a novel
Navier–Stokes projection method is developed which ensures
mass conservation. Unlike the previous method, here the interface
is simply advected with the underlying flow-field; it is the flow-
field itself which explicitly takes into account any possible mass
loss. As will become apparent later in the manuscript, it is useful
to think of this method as modifying the pressure so that it
can handle not only local incompressibility but also global mass
conservation. Note that while this manuscript will focus on a
particular Navier–Stokes numerical implementation, the concept
presented here extends to any type of multiphase fluid simulation
that uses a projection method.

The remainder of the manuscript is as follows. In Section 2
the single-fluid formulation of multiphase fluid flow is briefly
described. The novel mass-preserving Navier–Stokes projection
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Fig. 1. Schematic of velocity-interface decoupling. The interface begins on the left
(solid line). The underlying flow field dictates that the interface moves to the right
and should end as the dash-line after a single time step. Due to an externally applied
correction the interface instead ends the time step at the dotted line.

Fig. 2. The level-set description of a multiphase fluid system. The outward facing
normal is shown for clarity.

method is described in Section 3. The numerical implementation
is given in Section 4, which is followed by numerical experiments
in Section 5. A short conclusion is presented in Section 6.

2. Single-fluid Navier–Stokes equations

In this section a brief introduction to the single-fluid formula-
tion ofmultiphase fluid flow is presented. In amultiphase fluid sys-
tem the interface between two immiscible fluids evolves over time.
In this work a level-set description of the interface is used. Let the
evolving interface be given as the set of points where the level-set
function is zero, Γ (t) = {x : φ(x, t) = 0}. The evolution of the
level set function φ(x, t) over time will implicitly determine the
location of the interface. Following convention the interior fluid,
Ω−, is given by φ < 0while the outer fluid,Ω+, is given by φ > 0,
Fig. 2. The entire domain is given as Ω = Ω+

∪ Ω−. Using the
level-set description it is possible to obtain geometric information
of the interface easily. For example, the outward facing normal is
simply n = ∇φ/∥∇φ∥ while the total curvature can be calculated
as κ = ∇ · n.

In each domain the Navier–Stokes equations hold,

ρ±
Du±

Dt
= −∇p±

+ ∇ ·

µ±


∇u±

+ ∇
Tu±


+ b±, (1)

∇ · u±
= 0, (2)

where ρ is the fluid density, µ is the fluid viscosity and b is any
body force term, such as gravity. The fluid equations are coupled
by a jump in the stress at the interface,
−pn + µ


∇u + ∇

Tu


· n = f , (3)

where [ ] indicates the jump of a quantity (outside minus inside)
across the interface and f are any forces, such as tension, which act
on the interface.

A difficulty in multiphase fluid simulations is the solution
of this set of coupled but discontinuous differential equations.
Some techniques, such as the Immersed Interface Method [21],
augment the discretization of the differential equations to take into
account the jumps across the interface. Another technique, which
is explained here, is to model the domain as a ‘‘single’’ fluid with
spatially varying properties [9,22]. The interface condition, Eq. (3),
is accounted for by converting the singular force contribution at
the interface into a body-force term localized around the interface.

Define the smooth Heaviside, Hε(φ), function as

Hε(φ) =


0 φ < −ε
1
2


1 +

φ

ε
+

1
π
sin


πφ

ε


|φ| ≤ ε

1 φ > ε

(4)

where ε is proportional to the grid spacing. From the definition of
the Heaviside function define the smoothed Dirac-Delta function
as δε(φ) = ∂Hε(φ)/∂φ,

δε(φ) =


0 |φ| > ε
1
2ε


1 + cos


πφ

ε


|φ| ≤ ε.

(5)

The use of the Heaviside and Dirac functions allows for the
calculation of the volume enclosed by a given level set as well as
the surface area as integrals over the domain,

V (φ) =


Ω

(1 − Hε(φ)) ∥∇φ∥dV , (6)

A(φ) =


Ω

δε(φ)∥∇φ∥ dV , (7)

where ∥∇φ∥ accounts for situations where φ is not a signed
distance function [23]. Depending on the form of Hε(φ) and δε(φ),
the ∥∇φ∥ term might not be needed.

Using the Heaviside function the density and viscosity are given
by ρε(φ) = ρ−

+

ρ+

− ρ−

Hε(φ) and µε(φ) = µ−

+
µ+

− µ−

Hε(φ). These functions also allow for the transforma-

tion of singular interface forces into localized body force terms. For
example, let the only singular interfacial force be from a uniform
surface tension, f = σκn, where σ is the coefficient of surface
tension. In conjunction with the smoothed density and viscosity
definitions this results in a single Navier–Stokes equation valid in
the entire domain,

ρε(φ)
Du
Dt

= −∇p + ∇ ·

µε(φ)


∇u + ∇

Tu


− σδε(φ)κ∇φ + bε(φ), (8)
∇ · u =0, (9)

where the body force term has been written as a smooth function
of the level-set and the velocity is assumed to be continuous across
the interface. This type of single-fluid formulation for multiphase
flowhas been used tomodel bubbles and droplets [24,25] and vesi-
cles [15,26].

The results below focus on bubbles and droplets under
the influence of surface tension and gravity. Therefore, the
interface and body force are restricted to this particular case. The
dimensionless form of the single-fluid Navier–Stokes equations
can be obtained by defining a characteristic length l0, and velocity
u0, from which a characteristic time can be obtained, t0 = l0/u0.
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