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a b s t r a c t

Synthetic data describing coherent random fluctuations have widely been used to validate numerical
simulations against experimental observations or to examine the reliability of extracting statistical
properties of plasma turbulence via correlation functions. Estimating correlation time or lengths based
on correlation functions implicitly assumes that the observed data are stationary and homogeneous. It
is, therefore, important that numerically generated synthetic data also satisfy the stationary process
and homogeneous state. Based on the synthetic data with randomly generated moving Gaussian shaped
fluctuations both in time and space, the correlation function depending on the size of averaging time
window is analytically derived. Then, the smallest possible spatialwindow size of synthetic data satisfying
the stationary process and homogeneous state is proposed, thereby reducing the computation time to
generate proper synthetic data and providing a constraint on the minimum size of simulation domains
when using synthetic diagnostics to compare with experiment. This window size is also numerically
confirmed with 1D synthetic data with various parameter scans.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Not being deterministic, turbulent structures must be studied
based on the statistical grounds. Therefore, developing reliable
statistical analyses to extract turbulence characteristics from
the measured data is of paramount importance. For example,
correlation functions can estimate correlation time and lengths
of the turbulence, and the cross-correlation time delay method
allows us to measure the velocity of pattern flows [1–3].

As numerical simulations and experimental diagnostics on
plasma turbulence become more sophisticated, synthetic turbu-
lence data generated from the simulations have been used to com-
pare the results from simulations and experiments directly [4–6].
Turbulence synthetic data can also be used to examine the relia-
bility of statistical techniques used to extract turbulence charac-
teristics [1,7–9], i.e., turbulence characteristics extracted from the
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synthetic data using a statistical technique can be compared with
the input parameters generating the synthetic data.

Validating and improving statistical analyses and physical
model of turbulence using synthetic data may unveil many
unknown factors associated with turbulence. For example, as the
turbulence driven transport in a magnetically confined plasma
exceeds the neoclassical transport level by at least an order of
magnitude [10], it is desirable to suppress the turbulence. For this
purpose, we wish to understand the basic characteristics of the
turbulence such as decorrelation rate and correlation lengths, and
to perceive how they are correlated with equilibrium quantities,
how they react back to these equilibrium quantities, and hopefully
how they might be controlled [11–18], and synthetic data is
one of the tools that can enhance our physics understanding of
turbulence.

The property of synthetic data themselves has not been thor-
oughly investigated so far. For instance, as estimating correlation
time and lengths using correlation functions from the measured
data implicitly assumes that the data are stationary and homoge-
neous, synthetic data must also comply with the conditions of sta-
tionary process and homogeneous state. Stationary process means
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Fig. 1. A diagram depicting the total simulation domain ∆L and a smaller
‘viewing’ domain (domain of interest) ∆Lview where the generated synthetic data
are stationary and homogeneous. Outside ∆Lview the synthetic data may become
non-stationary and/or non-homogeneous depending on how they are generated.

that low moments of fluctuating data such as mean and variance
do not vary with time; while if they are unchanged in space, then
the data are said to be homogeneous. To generate ‘true’ station-
ary and homogeneous synthetic data, the simulation domain has
to be infinitely large due to the finite correlation time and lengths
of turbulent eddies. This is impractical. In practice, turbulent struc-
tures, or ‘eddies’, are generated within a finite spatial domain and
temporal domain. Therefore, for eddies which have a finite spatial
and temporal extent, there are no sources fromoutside of these do-
mains that contribute to the response within the domain (assum-
ing that the boundary conditions are not periodic). Hence, these
cause a spatial (and/or temporal) variation that leads to an inho-
mogeneous (non-stationary) correlation function.

In this paper, we thus provide theminimal size of required sim-
ulation domain ∆L given the ‘viewing’ domain (domain of inter-
est) ∆Lview upon where one would apply statistical analyses as
shown in Fig. 1. This means that generated synthetic data within
∆Lview must be stationary and homogeneous, otherwise statisti-
cally calculated correlation functionsmay give us incorrect results.
Of course, we wish to find the minimal ∆L so that we do not waste
our computation resource. Or, for the case of local gyro-kinetic (GK)
simulations where simulation domains ∆L are set, we provide the
maximum possible ∆Lview where the synthetic data can be valid
for direct comparisons with experimental observations.

We first describe the mathematical model of a fluctuating
quantity, or ‘eddy’, such as density, temperature or potential in
Section 2 and analytically derive correlation functions assuming
that eddies are uniformly distributed in an infinitely large domain.
In Section 3, we provide the condition on the total simulation
domain∆L as a function of the ‘viewing’ domain∆Lview and the size
of the turbulent eddies, based on the derived correlation function
such that the generated synthetic data satisfy stationarity and
homogeneity. This condition is verified numerically using the 1D
(in space) fluctuating synthetic data with various parameter scans.
Note that even thoughweuse 1D synthetic data, our arguments can
be generalized to 3D as long as the basis vectors are orthogonal to
each other. Our conclusion follows in Section 4.

2. Correlation function of ‘eddies’

2.1. Mathematical model of ‘eddies’

In this section, we introduce a mathematical model describing
real fluctuations as an ensemble of ‘eddies’ – its definition will
follow soon – based on which we derive the correlation function
and generate synthetic data [1,7,8]. For simplicity we model the
fluctuations in a 1D spatial domain. We represent our data at the
spatial location x = xa as a function of time as

Sa(t) =

N
i=1

Sai(t), (1)

where Sai (t) is the ith ‘eddy’, and N is the total number of eddies
generated in the synthetic data.

Fig. 2. An example of the contour of a single eddy in the space (ordinate) and time
(abscissa) coordinate. The correlation length (λx) and time (τlife) in Eq. (2) are also
depicted. The slope of the red line is the velocity of the eddy. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

We have many different possibilities on what mathematical
form Sai (t) would take. Inspired by the experimental observations
on ion-scale density fluctuations [3,19], we model that eddies are
Gaussian shaped in both time and space:

Sai (t) = Ai exp

−

(t − ti)2

2τ 2
life

−
(xa − v (t − ti) − xi)2

2λ2
x


. (2)

Coherent properties of each eddy in space and time are parame-
terized by the characteristic spatial scale (λx) and the characteris-
tic temporal scale (τlife). The ith eddy has a maximum amplitude
Ai at x = xi and t = ti. Further, we allow an eddy to move with
the velocity of v. Note that our model eddy does not contain the
wave-like structures [1], and we justify it by arguing that we are
primarily interested in the envelope of eddies. The envelopes can
be readily obtained from the measured data by invoking Hilbert
transform [20]. Here, Ai is selected from a normal distributionwith
zero mean and variance of A2; whereas xi and ti are randomly se-
lected from uniform distributions:
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(3)

where P (ti), P (xi) and P (Ai) are the probabilities of obtaining ti, xi
and Ai, respectively. ∆T and ∆L are the total simulation domains
in time and space, respectively (as in Fig. 1 for ∆L). Furthermore,
to make sure that eddies do not occur too frequently or too rarely,
we define a spatio-temporal filling factor F [1]. We determine the
total number of eddies (N) generated in a set of synthetic data such
that the following expression is satisfied:

F = N


λx

∆L

 τlife

∆T


∼ O (1) . (4)

Fig. 2 shows an example of the contour of a generated eddy in the
spatial and temporal coordinates.

2.2. Correlation function of stationary and homogeneous fluctuating
data

As many kinds of statistical analyses are performed on the
data based on the stationary and homogeneous assumptions, we
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