Accepted Manuscript

Room-temperature self-healing tough nanocomposite hydrogel crosslinked by zirconium hydroxide nanoparticles

Haoyang Jiang, Gongzheng Zhang, Xianqi Feng, Huanqing Liu, Feibo Li, Muqun Wang, Huanjun Li

DOI: 10.1016/j.compscitech.2016.12.027

Reference: CSTE 6617

To appear in: Composites Science and Technology

Received Date: 19 October 2016
Revised Date: 23 December 2016
Accepted Date: 29 December 2016

Please cite this article as: Jiang H, Zhang G, Feng X, Liu H, Li F, Wang M, Li H, Room-temperature self-healing tough nanocomposite hydrogel crosslinked by zirconium hydroxide nanoparticles, *Composites Science and Technology* (2017), doi: 10.1016/j.compscitech.2016.12.027.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Room-temperature self-healing tough nanocomposite hydrogel crosslinked by zirconium

hydroxide nanoparticles

Haoyang Jiang, Gongzheng Zhang, Xianqi Feng, Huanqing Liu, Feibo Li, Muqun Wang, and

Huanjun Li*

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, P. R.

China, 100081.

*Corresponding author.

E-mail address: lihj@bit.edu.cn (H.J. Li)

ABSTRACT: Tough hydrogels with excellent self-healing properties at room temperature are of

great importance for their potential applications in biomedical fields. Here, we demonstrate a

design of novel zirconium hydroxide crosslinking nanocomposite hydrogel that combine high

toughness (compressive strength of 36.6 MPa and tensile strength of 404.3 KPa) and self-healing

efficiency (86%) at ambient condition. The Zr-NC gel was synthesized by the random

copolymerization of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and acrylamide (AM)

through a facile preparation. The designed hydrogen-bonding network can be tuned through

changing the molar ratio and zirconium hydroxide. This novel Zr-NC gel will open an avenue for

the healable artificial cartilage and tissue engineering.

KEYWORDS: Self-healing; Nanocomposite hydrogel; Zirconium hydroxide nanoparticles;

High strength

1

Download English Version:

https://daneshyari.com/en/article/5022075

Download Persian Version:

https://daneshyari.com/article/5022075

<u>Daneshyari.com</u>