Accepted Manuscript

Improved dielectric properties of polypropylene-based nanocomposites via co-filling with zinc oxide and barium titanate

Jinzhao Hu, Liang Zhang, Zhi-Min Dang, Dongrui Wang

PII: S0266-3538(16)32027-9

DOI: 10.1016/j.compscitech.2017.05.009

Reference: CSTE 6776

To appear in: Composites Science and Technology

Received Date: 21 December 2016

Revised Date: 20 April 2017 Accepted Date: 9 May 2017

Please cite this article as: Hu J, Zhang L, Dang Z-M, Wang D, Improved dielectric properties of polypropylene-based nanocomposites via co-filling with zinc oxide and barium titanate, *Composites Science and Technology* (2017), doi: 10.1016/j.compscitech.2017.05.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Improved Dielectric Properties of Polypropylene-based Nanocomposites via Co-filling with

Zinc Oxide and Barium Titanate

Jinzhao Hu, ^a Liang Zhang, ^a Zhi-Min Dang, ^{b*} Dongrui Wang ^{a†}

^a Department of Polymer Science and Engineering, School of Chemistry and Biological

Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China

^b State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua

University, Beijing, 100084, China

Abstract: Tetra-needle-shaped zinc oxide whiskers (T-ZnOw) and barium titanate (BT)

nanoparticles were embedded into polypropylene (PP) matrix to construct ternary nanocomposites

with improved dielectric properties. The nanocomposites were fabricated via a melt blending and

subsequent compression molding approach. The microstructure, crystallization behavior, and

dielectric properties of as-fabricated nanocomposites were investigated in detail. Results reveal that

the selecting processing approach could afford isotropic nanocomposites with T-ZnOw and BT

nanoparticles homogeneously dispersed throughout the PP matrix. The T-ZnOw/PP binary

composites exhibited typical characteristics of percolation system with a relatively small threshold

of 13 vol%. When the content of T-ZnOw approaching the percolation threshold, the dielectric

constant and loss tangent of the binary composites were dramatically enhanced. After introducing

BT nanoparticles, the resultant ternary composites showed further improved dielectric performance.

For the ternary T-ZnOw/BT/PP with the BT content of 15 vol% and T-ZnOw content of 9.76 vol%,

dielectric constant and loss tangent at 1 kHz reached 11 and 0.04, respectively.

Keywords: Polypropylene; Composites; Dielectric Properties.

Corresponding author, E-mail address: dangzm@tsinghua.edu.cn

Corresponding author, E-mail address: wangdr@ustb.edu.cn

Download English Version:

https://daneshyari.com/en/article/5022121

Download Persian Version:

https://daneshyari.com/article/5022121

<u>Daneshyari.com</u>