Accepted Manuscript

Synergistic influence from the hybridization of boron nitride and graphene oxide nanosheets on the thermal conductivity and mechanical properties of polymer nanocomposites

Jin Zhang, Weiwei Lei, Dan Liu, Xungai Wang

PII: S0266-3538(17)31516-6

DOI: 10.1016/j.compscitech.2017.08.033

Reference: CSTE 6889

To appear in: Composites Science and Technology

Received Date: 23 June 2017
Revised Date: 23 August 2017
Accepted Date: 29 August 2017

Please cite this article as: Zhang J, Lei W, Liu D, Wang X, Synergistic influence from the hybridization of boron nitride and graphene oxide nanosheets on the thermal conductivity and mechanical properties of polymer nanocomposites, *Composites Science and Technology* (2017), doi: 10.1016/j.compscitech.2017.08.033.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synergistic Influence from the Hybridization of Boron Nitride and Graphene

Oxide Nanosheets on the Thermal Conductivity and Mechanical Properties of

Polymer Nanocomposites

Jin Zhang*, Weiwei Lei, Dan Liu, Xungai Wang*

Deakin University, Institute for frontier Materials, Geelong, VIC 3217, Australia

*Corresponding author.

Email address:

jin.zhang@deakin.edu.au, Tel.: +61 3 52271345; fax: +61 3 52271103

xungai.wang@deakin.edu.au, Tel.: +61 3 52272894; fax: +61 3 52272539

Abstract

Enhancing the thermal conductivity of polymers by introducing inorganic fillers with

low content remains challenge in modern electronic industries. By homogeneously

incorporating both functionalised boron nitride nanosheets and graphene oxide

nanosheets at low loading less than 1wt%, a poly(vinyl alcohol) (PVA) polymer was

able to reach in-plane thermal conductivity of 9.90 W/m·K as well as achieve high

extensibility and toughness. Synergistic influences of both nanofillers were observed

and the improved nanofiller/matrix interfaces and the nanofiller distribution were

ascribed to the remarkable enhancement in thermal conductivity. The facile fabrication

process has potential to be scaled-up that has significance in preparation of thermal

conductive polymers and composites for heat dissipation.

1

Download English Version:

https://daneshyari.com/en/article/5022304

Download Persian Version:

https://daneshyari.com/article/5022304

<u>Daneshyari.com</u>