## **Accepted Manuscript**

Vascular self-healing within carbon fibre reinforced polymer stringer run-out configurations

R. Luterbacher, T.S. Coope, R.S. Trask, I.P. Bond

PII: S0266-3538(16)30311-6

DOI: 10.1016/j.compscitech.2016.10.007

Reference: CSTE 6538

To appear in: Composites Science and Technology

Received Date: 16 May 2016

Revised Date: 6 October 2016 Accepted Date: 8 October 2016

Please cite this article as: Luterbacher R, Coope TS, Trask RS, Bond IP, Vascular self-healing within carbon fibre reinforced polymer stringer run-out configurations, *Composites Science and Technology* (2016), doi: 10.1016/j.compscitech.2016.10.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



#### ACCEPTED MANUSCRIPT

Title: Vascular self-healing within carbon fibre reinforced polymer stringer run-out configurations

Authors: R. Luterbacher, T.S. Coope, R.S. Trask, I.P. Bond

Keywords: FRP, bonded joints, self-healing, repair

### Abstract

Stringer debonding within stiffened, assembled aerospace structures is one of the most critical damage scenarios that can occur in such structures. As a result, a degree of redundancy is inherently built-in to the design process of skin-stringer configurations to mitigate against premature and inservice failure. Introducing a "self-healing" solution for stringer run-out configurations has the benefit of mitigating and controlling damage initiation, and by introducing this concept there is great potential to reduce excessive conservative safety margins that could ultimately lead to more lightweight designs. Vascular self-healing technology has been successfully implemented into a simplified strap lap specimen, showing that the introduction of a vascular microchannel reduces the strength by 15% but has little effect on the stiffness. Upon delivery and cure of epoxy-based self-healing agents full recovery of the mechanical properties was observed. This self-healing approach has been further implemented into industrially relevant, larger stringer run-out panels as a feasibility study, in which no knockdown to mechanical properties caused by the embedded vascular microchannels has been observed, this study has also shown similar promising results in terms of performance recovery.

#### Download English Version:

# https://daneshyari.com/en/article/5022416

Download Persian Version:

https://daneshyari.com/article/5022416

<u>Daneshyari.com</u>