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In this Note, we present a unified approach to the information-theoretic modeling and 
simulation of a class of elasticity random fields, for all physical symmetry classes. 
The new stochastic representation builds upon a Walpole tensor decomposition, which 
allows the maximum entropy constraints to be decoupled in accordance with the tensor 
(sub)algebras associated with the class under consideration. In contrast to previous works 
where the construction was carried out on the scalar-valued Walpole coordinates, the 
proposed strategy involves both matrix-valued and scalar-valued random fields. This 
enables, in particular, the construction of a generation algorithm based on a memoryless 
transformation, hence improving the computational efficiency of the framework. Two 
applications involving weak symmetries and sampling over spherical and cylindrical 
geometries are subsequently provided. These numerical experiments are relevant to the 
modeling of elastic interphases in nanocomposites, as well as to the simulation of spatially 
dependent wood properties for instance.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Preliminaries

1.1. Introduction

The representation of spatially dependent uncertainties is a cornerstone of predictive simulations. Over the past three 
decades, this has been mostly achieved, in linear elasticity, by resorting to polynomial chaos expansions (see [1] and the 
references therein for a recent survey) and algebraic decompositions of random fields. The latter type of approaches includes 
the selection or construction of models in the class of all admissible second-order stochastic representations, where admissi-
bility typically refers to the fulfillment (with probability one) of all the basic properties raised by the mathematical analysis 
of the stochastic boundary value problem [2,3]. In three-dimensional linear elasticity, such properties include, for instance, 
the positive-definiteness of the tensor-valued elasticity coefficient [4]. A contribution involving a priori model selection can 
be found, for instance, in [5] for isotropic materials, while construction methodologies building upon information theory 
[6,7] and the maximization of Shannon’s entropy were proposed in [2,8–11], to list a few. Such models will be referred 
to as information-theoretic ones below, and define admissible subsets – with a minimal modeling bias – of the set of all 
second-order elasticity random fields. They enable, in particular, fast numerical simulations for physics-based uncertainty 
propagation and involve low-dimensional hyperparameters, which allows for an identification solving (underdetermined) 
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statistical inverse problems. It should be noticed that a recent theoretical work addressing the modeling (through spectral 
expansions) of the complete set of elasticity tensors for all symmetry classes can be found in [12].

From a modeling standpoint, a key issue is the representation of anisotropy and the evolution of the latter as the 
elasticity tensor becomes random. Depending on the retained framework, the sought quantity of interest and computational 
resources, one may consider random fields of elasticity tensors with fluctuations in a given symmetry class (which may be 
inferred from microstructural information) or in the triclinic class (see [13] for a micromechanics-based discussion). The 
latter (triclinic) case was first addressed in [2], making use of earlier derivations proposed in [14] for structural dynamics. 
The model relies on a random matrix formulation that induces triclinic fluctuations and does not allow other symmetry 
classes to be considered, due the eigenvalue repulsion phenomenon [15]. Similar ideas were then pursued in [9,10], in which 
a decomposition onto an ad hoc tensor basis was used to circumvent this limitation. This approach involves an exponential 
map that allows one to relax the algebraic constraints generated by the positive-definiteness and symmetry properties of the 
tensor (in practice, these constraints can raise critical sampling issues for weak symmetries). Additionally, this construction 
enables efficient random field sampling through the integration of a family of stochastic differential equations.

In this Note, we show that these two constructions (namely, the one based on the random matrix approach and the 
one involving the tensorial decomposition) can indeed be unified in a rather simple form. This offers two benefits. First 
of all, the new random field model exhibits closed-form expressions (for some statistical properties) that are inherited 
from each stochastic representation and facilitate the calibration of the model hyperparameters. Secondly, the sampling 
algorithm turns out to be very robust and easy to implement. The model and generator are readily applicable, for instance, 
to the modeling of composite laminates and wood species (these materials being typically considered as orthotropic in an 
appropriate local or global coordinate system), and to the representation of bone properties (which may be modeled as a 
transversely isotropic material) in computational biomechanics.

This Note is organized as follows. The section 2 is concerned with the construction of the stochastic representation. The 
methodology is first outlined in Sec. 2.1. The definition of the probabilistic model is then addressed in the most general 
setting in Sec. 2.2. Numerical examples are finally provided in Sec. 3.

1.2. Notation

In this paper, deterministic scalars, vectors, second-order and fourth-order tensors are denoted by d, d, [D] and � D �. 
Let 〈·, ·〉 denote the Euclidean inner product in R3, with 〈x, y〉 :=∑3

i=1 xi yi for (x, y) ∈ R
3 × R

3. Let MS
6(R) be the set of 

symmetric real-valued (6 × 6) matrices. The inner product in MS
6(R) is defined as � [U ], [V ] �:= Tr([U ][V ]) for any [U ]

and [V ] in MS
6(R), and the induced (Frobenius) norm reads as ‖[U ]‖F =� [U ], [U ] �1/2. In addition, let M+

6 (R) ⊂M
S
6(R) be 

the set of symmetric positive-definite real-valued (6 × 6) matrices. The standard tensor product is denoted by ⊗, while the 
symmetric tensor product between second-order tensors is defined component-wise as: ([U ] � [V ])i jkl := (uik v jl + uil v jk)/2. 
Let [Is] be the identity matrix of size s.

Stochastic scalars, vectors and second-order tensors are denoted by D , D and [D] respectively. The mathematical expec-
tations E{D}, E{D} and E{[D]} of random variables D , D and [D] are denoted by d, d and [D], respectively. The level of 
statistical fluctuations exhibited by a random matrix [D] is characterized by the parameter δ[D] defined as

δ[D] :=
{
E{‖[D] − [D]‖2

F }
‖[D]‖2

F

}1/2

(1)

Note that when applied to a scalar random variable, the above equation coincides with the standard definition of the 
coefficient of variation. Finally, c0 denotes the normalization constant involved in probability density functions. The value of 
c0 may therefore change from line to line with no specific statement.

2. Construction of the random field model

2.1. Overview of the methodology

Let {[C(x)], x ∈ �} be the M-valued random field of elasticity tensor, with M ⊆ M
+
6 (R) and � ⊂ R

3. The modified Voigt 
representation of fourth-order tensors is considered (see e.g., [16]), and the elasticity field is expressed in a given Cartesian 
global coordinate system Rg := (O , e1, e2, e3) (with generic variables x and y). Regarding the material symmetry exhibited 
by the material, two practical situations can be envisioned as follows:

• When the symmetry class under consideration is defined by crystallographic orientations that are independent of x
in Rg (in which case the symmetry properties hold in the global coordinate system), the state space M is equal to 
M

sym
6 (R), where Msym

6 (R) ⊂ M
+
6 (R) is the set of elasticity matrices belonging to the symmetry class parametrized by 

the aforementioned preferred directions (note that the dependence of Msym
6 (R) on these directions is not made explicit 

in order to simplify notations).
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