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Simulations using a Restricted Nonlinear (RNL) system, where mean flow distortion 
resulting from Reynolds stress feedback regenerates rolls, is applied in a channel flow 
under subcritical conditions. This quasi-linear restriction of the dynamics is used to 
study invariant solutions located in the bulk of the flow found recently by Rawat et al. 
(2016) [14]. It is shown that the RNL system truncated to a single streamwise mode 
for the perturbation supports invariant solutions that are found to bifurcate from a 
relative periodic orbit into a travelling wave solution when the spanwise size is increasing. 
In particular, the travelling wave solution exhibits a spanwise localized structure that 
remains unchanged for large values of the spanwise extent as the invariant solution 
lying on the lower branch found by Rawat et al. (2016) [14]. In addition, travelling 
wave solutions provided by this minimal RNL system are self-similar with respect to the 
Reynolds number based on the centreline velocity, and the half-channel height varying 
from 2000 to 5000.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The investigation of relative invariant solutions for wall-bounded flows with homogeneous spatial directions, such as 
pipes and channels, helped to achieve a considerable step forward in the understanding of phase space trajectories leading 
to turbulence, under subcritical conditions.

In particular, travelling waves and/or relative periodic orbits have been found at Reynolds numbers much lower than the 
one corresponding to the onset of an exponential mode (see for instance Duguet et al. [1], Kerswell and Tutty [2], Waleffe 
[3] and Schneider et al. [4] for pipe, channel and Couette flows, respectively). In addition, the linearized dynamics about 
these solutions are found to be unstable for most of them.

In that context, several efforts have been made to show that coherent structures observed in wall turbulence result from 
close passes to unstable invariant solutions [5]. For instance, travelling wave solutions of channel flow concentrated near 
walls were numerically studied by Jimenéz and Simens [6], Gibson and Brand [7]. Previous authors suggested that these 
travelling waves correspond to elemental version of near-wall coherent structures. In particular, they bear strong similarities 
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with simplified flow motions obtained by direct numerical simulations (DNS) using a “minimal” system (i.e. the smallest 
computational box in which turbulence may be sustained) [8,9]. A relative periodic orbit solution obtained in a minimal 
channel flow unit is also suggested by Toh and Itano [10] as the fundamental process of near-wall turbulence.

These solutions feature a sinuously bent low-speed streak flanked by a pair of quasi-streamwise vortices that are or-
ganized into a self-sustained cycle (see Waleffe and Kim [11]; and Duriez et al. [12] for experimental evidence). Recently, 
Rawat et al. [13] and Rawat et al. [14] computed invariant solutions in channel flows at Reynolds numbers based on the 
centreline velocity and the half channel height varying from 2000 to 5000. While invariant solutions described above are 
concentrated near the walls, the latter occupy the bulk of the flow. These solutions consist also in sinuous streamwise 
streaks, periodically or continuously forced by quasi-streamwise vortices in a self-sustained process. Rawat et al. [14] have 
shown that two branches of travelling wave solutions bifurcate from a relative periodic orbit when the spanwise extent is 
increased. While the lower branch of travelling wave solutions is characterized by a spanwise-localized pattern, structures 
lying on the upper branch develop multiple streaks when the spanwise size is increased. These solutions are seen to persist 
in the turbulent regime, giving some evidence that they are linked to self-sustained large-scale coherent motions populating 
the outer region [15].

Therefore, the important role of these invariant solutions in bypass transition and low-Reynolds-number turbulence re-
quires the development of numerical methods and models aiming to overcome their expensive computational cost. For that 
purpose, Thomas et al. [16] and Farrell et al. [17] have recently developed a low-order model, referenced as the Restricted 
Nonlinear model (RNL), which involves key elements of the self-sustained process. In particular, the RNL model relies on a 
coupled system of equations reproducing the amplification of the streak secondary instability whose quadratic interactions 
regenerate rolls that induce streaks by lift-up effect and close the loop of the self-sustained process. Furthermore, Thomas 
et al. [16] show a close correspondence between RNL models and DNS for the case of a turbulent plane Couette flow at 
low-Reynolds number. In addition, the RNL system is seen to sustain a turbulent state with a small number of streamwise 
modes.

Hence, the goal of this work is to further investigate RNL models in reproducing invariant solutions found recently by 
Rawat et al. [14]. Such an analysis may thus provide a promising tool to analyze the emergence of large-scale motions in 
wall-bounded turbulent flows with relatively low degrees of freedom. This paper is organized as follows. Section 2 contains 
a derivation of the minimal RNL model where only one streamwise varying mode is considered. Section 3 is devoted to 
reproduce invariant solutions found by Rawat et al. [14] using the minimal RNL model. We will explore the evolution of 
these invariant solutions when the Reynolds number is varying from 2000 to 5000 for a wide range of spanwise sizes. 
Finally, a discussion follows in section 4.

2. Governing equations and numerical methods

In this section, we describe briefly the system of equations that is used. The latter is based on the previous work of 
Waleffe and Kim [11] and has also been recently considered by Thomas et al. [16] in the study of the self-sustaining process 
that maintains turbulence in Couette flow. Accounting that roll/streak dynamics is a key element of invariant solutions in 
wall-bounded flows, we will consider hereafter a model reproducing the so-called self-sustained process, which states that 
streaks are generated by the superposition of streamwise rolls and a shear flow (through the lift-up effect), being in turn 
sustained by the continual reformation of the roll resulting from nonlinear interactions of the streak instability mode.

Following Farrell et al. [17], we consider a plane channel flow where a constant mass flux is maintained through a 
time-varying pressure gradient referenced as G(t). The streamwise, wall-normal and spanwise coordinates are x, y, and z, 
respectively. The lengths of the channel in x, y and z are Lx , 2h (where h is the half-channel height) and Lz , respectively. 
We introduce a streamwise average operator: [•]. The instantaneous velocity field, u = (u, v, w)t (where u, v and w are 
the streamwise, wall normal and spanwise velocity components, respectively) is decomposed into its streamwise mean 
value (U = (U , V , W )t = [u]) and a perturbation, u′ = (u′, v ′, w ′)t, such as u = U + u′ . The pressure is similarly written as: 
p = −G(t)x + P + p′ . The Navier–Stokes equations for an incompressible flow are then rewritten into a coupled system for 
the streamwise mean velocity field and the perturbation. The set of equations for the streamwise mean velocities is given 
below:
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with ν is the kinematic viscosity. The roll/roll interactions are assumed to be high-order terms [11] and are neglected in 
equations (1). The perturbation field is governed by:



Download	English	Version:

https://daneshyari.com/en/article/5022502

Download	Persian	Version:

https://daneshyari.com/article/5022502

Daneshyari.com

https://daneshyari.com/en/article/5022502
https://daneshyari.com/article/5022502
https://daneshyari.com/

