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Starting from the 3D Signorini problem for a family of elastic elliptic shells, we justify that 
the obstacle problem of an elastic elliptic membrane is the right approximation posed in a 
2D domain, when the thickness tends to zero. Specifically, we provide convergence results 
in the scaled and de-scaled formulations.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the last decade, asymptotic methods have been used to derive and justify contact models for beams and plates and, 
recently, in [1,2] the authors obtained the first results in the justification of obstacle problems as the two-dimensional 
limit of unilateral frictionless contact problems for the particular case of shallow shells. Additionally, the rigid foundation/
obstacle was assumed to be a plane. More recently, in [3], we developed the formal asymptotic analysis of the problem for 
general elastic shells in frictionless contact with a rigid foundation, without the previously indicated restrictions. From the 
work in [3], a classification of different limit problems arose, depending upon the geometry of the middle surface and the 
region where the Dirichlet condition was placed. This classification is the natural extension of what was found by Ciarlet, 
Sánchez-Palencia et al. in their works for the case without contact, namely, membranes and flexural shells (see [4] and 
references therein). This Note aims at justifying rigorously that the obstacle problem of an elastic elliptic membrane is the 
right two-dimensional approximation of the three-dimensional Signorini problem for a family of elastic elliptic shells, when 
the thickness tends to zero.

2. The three-dimensional Signorini contact problem for elastic shells: variational formulation in curvilinear coordinates

Let ω be a domain of R2, with a Lipschitz-continuous boundary γ = ∂ω. Let y = (yα) be a generic point of its closure 
ω̄ and let ∂α denote the partial derivative with respect to yα . Let θ ∈ C2(ω̄; R3) be an injective mapping such that the two 
vectors aα(y) := ∂αθ(y) are linearly independent. These vectors form the covariant basis of the tangent plane to the surface 
S := θ(ω̄) at the point θ(y). We can consider the two vectors aα(y) of the same tangent plane defined by the relations 
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aα(y) · aβ(y) = δα
β , which constitute its contravariant basis. We define a3(y) = a3(y) := a1(y)∧a2(y)

|a1(y)∧a2(y)| the unit normal vector 
to S at the point θ(y), where ∧ denotes the vector product in R3. We can define the first fundamental form, given as 
the metric tensor, in covariant or contravariant components, respectively, by aαβ := aα · aβ , aαβ := aα · aβ . Here and in 
what follows, Greek indices take their values in the set {1, 2}, whereas Latin indices do it in the set {1, 2, 3}. The second 
fundamental form, given as the curvature tensor, in covariant or mixed components, respectively, is given by bαβ := a3 ·∂βaα , 
bβ
α := aβσ · bσα , and the Christoffel symbols of the surface S as 	σ

αβ := aσ · ∂βaα . The area element along S is 
√

a dy where 
a := det(aαβ).

We define the three-dimensional domain 
ε := ω × (−ε, ε) and its boundary 	ε = ∂
ε . We also define the following 
parts of the boundary, 	ε+ := ω × {ε}, 	ε

C := ω × {−ε}, 	ε
0 := γ × [−ε, ε]. Let xε = (xε

i ) be a generic point of 
̄ε and let ∂ε
i

denote the partial derivative with respect to xε
i . Note that xε

α = yα and ∂ε
α = ∂α . Let � : 
̄ε → R

3 be the mapping defined 
by

�(xε) := θ(y) + xε
3a3(y) ∀xε = (y, xε

3) = (y1, y2, xε
3) ∈ 
̄ε (1)

In [4, Th. 3.1-1], it is shown that if the injective mapping θ : ω̄ → R
3 is smooth enough, the mapping � : 
̄ε → R

3 is 
also injective for 0 < ε < ε0 small enough and the vectors gε

i (xε) := ∂ε
i �(xε) are linearly independent. Therefore, the 

three vectors gε
i (xε) form the covariant basis at the point �(xε), and g i,ε(xε), defined by the relations g i,ε · gε

j = δi
j , form 

the contravariant basis at the point �(xε). The covariant and contravariant components of the metric tensor are defined, 
respectively, as gε

i j := gε
i · gε

j , gij,ε := g i,ε · g j,ε , and Christoffel symbols as 	p,ε
i j := g p,ε · ∂ε

i gε
j . The volume element in 

the set �(
̄ε) is 
√

gε dxε and the surface element in �(	ε) is 
√

gε d	ε , where gε := det(gε
i j). Let nε(xε) denote the 

unit outward normal vector on xε ∈ 	ε and n̂ε
(x̂ε

) the unit outward normal vector on x̂ε = �(xε) ∈ �(	ε). It is verified 
that (see, [5, p. 41]) n̂ε

(x̂ε
) = Cof(∇�(xε))nε(xε)

| Cof(∇�(xε))nε(xε)| . We are particularly interested in the normal components of vectors on 
�(	ε

C). Recall that on 	ε
C , it is verified that nε = (0, 0, −1). Also, note that from (1), we deduce that gε

3 = g3,ε = a3, and 
therefore g33,ε = |g3,ε| = 1. These arguments imply that, in particular, n̂ε

(x̂ε
) = −g3(xε) = −a3(y), where x̂ε = �(xε) and 

xε = (y, −ε) ∈ 	ε
C . Now, for a field v̂ε defined in �(
̄ε), where the Cartesian basis is denoted by {êi}3

i=1, we define its 
covariant curvilinear coordinates (vε

i ) in 
̄ε as v̂ε
(x̂ε

) = v̂ε
i (x̂ε

)êi =: vε
i (xε)g i,ε(xε) with x̂ε = �(xε). Therefore, on 	ε

C , we 
have:

v̂n := v̂ε · n̂ε = (v̂ε
i n̂i,ε) = (v̂ε

i êi
) · (−g3) = (vε

i g i,ε) · (−g3) = −vε
3

Also, since vε
i ni,ε = −vε

3 on 	ε
C , it is verified in particular that v̂n = (v̂ε

i n̂i,ε) = vε
i ni,ε = −vε

3.
We assume that �(
̄ε) is a natural state of a shell made of an elastic material, which is homogeneous and isotropic, so 

that the material is characterized by its Lamé coefficients λ ≥ 0, μ > 0. We assume that these constants are independent 
of ε. We also assume that the shell is subjected to a boundary condition of place; in particular, the displacements field 
vanishes on �(	ε

0), this is, the whole lateral face of the shell. Further, under the effect of applied volume forces of density 
f̂
ε = ( f̂ i,ε) acting in �(
ε) and tractions of density ĥ

ε = (ĥi,ε) acting upon �(	ε+), the elastic shell is deformed and may 
enter in contact with a rigid foundation, which, initially, is at a known distance sε measured along the direction of n̂ε on 
�(	ε

C). For simplicity, we take sε = 0 in the following.
We deduce that the unilateral contact condition v̂n ≤ 0 in the well-known definition of the set of admissible dis-

placements in Cartesian coordinates is equivalent to vε
3 ≥ 0 in curvilinear coordinates. Therefore, let us define the set of 

admissible unknowns as follows:

K (
ε) = {vε = (vε
i ) ∈ V (
ε); vε

3 ≥ 0 on 	ε
C}

where V (
ε) = {vε = (vε
i ) ∈ [H1(
ε)]3; vε = 0 on 	ε

0} is a real Hilbert space with the induced inner product of [H1(
ε)]3. 
The corresponding norm is denoted by || · ||1,
ε . Note that K (
ε) is a non-empty, closed and convex subset of V (
ε). 
We now give in contravariant components the volume forces f i,ε(xε)gε

i (xε), and tractions hi,ε(xε)gε
i (xε)

√
gε(xε)d	ε . With 

these definitions, it is straightforward to derive the variational formulation of the Signorini problem in curvilinear coordi-
nates:

Problem 2.1. Find uε = (uε
i ) : 
ε → R

3 such that

uε ∈ K (
ε),

∫

ε

Aijkl,εeε
k||l(uε)(eε

i|| j(vε) − eε
i|| j(uε))

√
gε dxε

≥
∫

ε

f i,ε(vε
i − uε

i )
√

gε dxε +
∫
	ε+

hi,ε(vε
i − uε

i )
√

gε d	ε ∀vε ∈ K (
ε)
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