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For linear composite conductors, it is known that the celebrated Hashin–Shtrikman bounds 
can be recovered by the translation method. We investigate whether the same conclusion 
extends to nonlinear composites in two dimensions. To that purpose, we consider two-
phase composites with perfectly conducting inclusions. In that case, explicit expressions of 
the various bounds considered can be obtained. The bounds provided by the translation 
method are compared with the nonlinear Hashin–Shtrikman-type bounds delivered by the 
Talbot–Willis (1985) [2] and the Ponte Castañeda (1991) [3] procedures.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In a seminal work [1], Hashin and Shtrikman have obtained optimal bounds on the effective conductivity of linear com-
posite conductors with statistically isotropic microstructures. Those bounds are explicit functions of the volume fractions 
and conductivities of each constitutive phase. Several methods have been proposed to extend the results of Hashin and 
Shtrikman to nonlinear composites. A first method, proposed by Talbot and Willis [2], makes uses of a homogeneous linear 
comparison medium and generalizes the variational approach introduced by Hashin and Shtrikman. A second method, due 
to Ponte Castañeda [3], employs a heterogeneous linear comparison medium, i.e. a linear comparison composite. Using that 
last method, any bound on the effective conductivity of the linear comparison composite can be used to generate a cor-
responding bound for the nonlinear composite. In particular, when the linear Hashin–Shtrikman bound is used, nonlinear 
Hashin–Shtrikman-type bounds are obtained. A third method, known has the translation method [4], has been introduced 
independently by Lurie and Cherkaev [5], Murat and Tartar [6]. Originally introduced in the linear context, that method has 
proved to be very fruitful in a lot of nonlinear homogenization problems [7–12]. For nonlinear isotropic conductors, the 
translation method has been used to obtain explicit bounds for composites governed by threshold-type energy functions 
[13,14].

The three methods mentioned above can generate nonlinear bounds of the Hashin–Shtrikman type, i.e. bounds that hold 
for the whole class of isotropic composites with prescribed volume fractions and conduction properties of the individual 
phases. As those methods are not mathematically equivalent, it is important to understand the relations between them. 
The relation between the Talbot–Willis and the Ponte Castañeda methods has been investigated in [15]: for two-phase 
composites with perfectly conducting inclusions, the two methods have been proved to give the same results if the energy 
function of the matrix satisfies a certain strong convexity condition. If that condition is violated, the Talbot–Willis method 
leads to stronger bounds than the Ponte Castañeda method. The relations with the translation method have been studied 
in [13]: Bounds obtained from the translation method have been proved to be always at least as good as those provided by 
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the Ponte Castañeda method. For two-dimensional composites governed by threshold-type energy functions, the translation 
method actually gives the same bounds as the Ponte Castañeda method. Numerical results suggest that the same conclusion 
extends to power-law composites, although a rigorous proof is still lacking.

The objective of this paper is to fill some of the gaps in the relations between the translation method and the methods 
of Ponte Castañeda, Talbot and Willis by investigating conditions under which the translation method may bring a genuine 
improvement. To that purpose, we consider two-phase composites with perfectly conducting inclusions, in two dimensions. 
The formulation of the translation method in that context is presented in Sect. 2. If the energy function of the matrix 
satisfies the strong convexity assumption introduced in [15], we prove in Sect. 3 that the translation method gives the same 
bounds as the Talbot–Willis and Ponte Castañeda methods. This confirms the numerical observations made in [13] for the 
special case of power-law composites. For the translation method to bring a genuine improvement, it is therefore necessary 
that the energy in the matrix is not strongly convex. Building on that observation, in Sect. 4 we provide an example for 
which bounds obtained from the translation method are indeed stronger than the Talbot–Willis and Ponte Castañeda bounds.

2. Bounding the effective energy via the translation method

Consider a two-dimensional inhomogeneous electric conductor occupying a domain � of unit volume. The electric field 
e and the current density j are related by the local constitutive law

j = ∂ w

∂e
(e, x) (1)

where the convex energy-density function w depends on the location x. Denoting by ē (resp. j̄ ) the spatial average of e
(resp. j), the effective constitutive law reads as [16,17]

j̄ = dweff

dē
(ē) (2)

where weff is the effective energy function of the composite material, defined by

weff(ē) = inf
e∈K (ē)

∫
�

w(e, x)dω (3)

In (3), K (ē) is the set of admissible electric fields, as defined by

K (ē) = {e : � �→R
2|e = ∇V for some V : � �→R verifying V (x) = ē·x on ∂�}

Following [5,6], a lower bound on weff can be obtained by embedding the original problem in a problem of dimension 4. 
In more detail, we introduce extended fields E(x) = (e1(x), e2(x)) obtained by considering 2 electric fields e1(x) and e2(x), 
written side by side. Introducing the extended energy

W (E, x) = w(e1, x) + w(e2, x)

as well as the extended effective energy

Weff(Ē) = weff(ē1) + weff(ē2) (4)

it can be readily seen from (3) that

Weff(Ē) = inf
E∈K(Ē)

∫
�

W (E, x)dω (5)

where Ē = (ē1, ̄e2) and K(Ē) = {(e1, e2) : ei ∈ K (ēi)}. We now proceed to bound Weff from below. To that purpose, it is 
convenient to represent extended fields E = (e1, e2) by 2 × 2 matrices, i.e.

E =
(

u1 u2
v1 v2

)

where ui and vi are the components of the electric field ei in a reference basis of R2. For any scalar α and any T in R2×2, 
consider the Legendre transform

(W − α det)∗(T , x) = sup
E

E : T − W (E, x) + α det E (6)

where E : T = tr E T and det is the determinant in R2, i.e. det E = u1 v2 − u2 v1. For any E ∈K(Ē), it follows from (6) that

W (E, x) ≥ E(x) : T + α det E(x) − (W − α det)∗(T , x) (7)
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