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The empirical Darcy law describing flow in porous media, whose convincing theoretical 
justification was proposed almost 130 years after its original publication in 1856, has 
however been extended to account for particular flow conditions. This article reviews 
historical developments aimed at including inertial and slip effects (respectively, when the 
Reynolds and Knudsen numbers are not exceedingly small compared to unity). Despite the 
early empirical extensions to include inertia and slip effects, it is striking to observe that 
clear formal derivations of physical models to account for these effects were reported only 
recently.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Flows in porous media are of interest in numerous applications ranging from hydrology, hydrocarbon recovery, gas and 
nuclear waste storage, to drying of wood, transfer in food products or in living tissues to cite but a few. The main char-
acteristic of this particular domain of fluid mechanics lies in the (sometimes extreme) complexity of the geometry of the 
channels where the flow takes place. Additionally, in many situations, this geometry is unknown in its very details and 
may vary over more or less long distances characteristics of heterogeneities. Within this context, the physical description of 
the flow in such materials may appear to be a tremendous challenge.1 This certainly explains why empiricism remained so 
strong and lasted longer than in many other fields of fluid mechanics. In many situations, the interest is not in the details of 
the flow within the pores but rather in the flux-to-force governing laws at length scales including a large numbers of pores, 
although comprehensive analyses at the pore scale remain the corner stone in any progress towards the derivation of gov-
erning laws at larger scales. Clearly, active research in the description of transfer in porous materials was triggered by the 
publication of Darcy’s law in the middle of the 19th century and the emergence of a key macroscopic physical characteristic 
of a porous medium, namely the ability of a fluid to flow through it, i.e. its permeability.

* Corresponding author.
E-mail addresses: didier.lasseux@ensam.eu (D. Lasseux), iqfv@xanum.uam.mx (F.J. Valdés-Parada).

1 The one-phase slow flow is probably one of the simplest mechanism one can think about and there is a lot of other tremendously more complex 
physical processes in porous media of relevance from both scientific and industrial points of view, including multiphase flows, compressible flows, phase 
change, deformable porous media, reactions in multicomponent systems, etc.
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1.1. Darcy’s law as an empirical basis

Ever since its empirical formulation in 1856, Darcy’s law [1] has been a hallmark in modeling momentum transport 
through porous media. In this classical publication, there is a section entitled Détermination des lois d’écoulement de l’eau à 
travers le sable, dedicated to the study of water flows through a bed of sand where the following relation is proposed (see 
page 594 in [1]):

q = k
s

e
(h + e) (1)

where q is the volumetric flow rate, s is the cross section of the sand bed, e is the bed width, h is the pressure (or head) 
difference between the surface and the base of the sand bed, and finally k was proposed as a coefficient that depends on 
the permeability of the bed2 and on the properties of the fluid. For an excellent review about the origin of Darcy’s law, the 
interested reader is referred to the work by Zerner [3]. The use of this simple relation requires that the only resistance to 
the flow through the porous medium is due to viscous stresses induced by an isothermal, creeping (or laminar) steady flow 
of a Newtonian fluid within an inert, rigid and homogeneous porous medium. However, the lack of a rigorous upscaling 
technique prevented a formal derivation of this equation until the late 1960s, as it will be detailed later.

For a very long period of time – around fifty years – this law has been essentially verified experimentally in its global 
form, but was not considered in a local differential form nor derived on a theoretical basis. One finds a differential expres-
sion in the analysis of the flows in aquifers by J. Boussinesq [4] as a result of an analogy with heat transfer in a continuum. 
This work also reports an extension of the flow-rate-to-head-gradient relationship to non-homogeneous media. A formal 
derivation of a 1D local expression of this law obtained from the solution to the Stokes equation for a flow parallel to a 
regular array of infinite parallel cylinders (sufficiently apart from each other, i.e. for relatively large porosities) is due to 
Emersleben in 1925 [5]. A derivation mainly based on dimensional analysis was later proposed by Muskat and Botset in 
1931 [2] for a compressible flow in which the pressure difference is recognized to be replaced by the difference of the 
squares of the pressures.

Substantial literature will then appear during the 1950s, in which many different approaches to demonstrate Darcy’s 
law will be tested (see for instance [6] and references therein). Although these articles helped progressing into the under-
standing of the applicability of Darcy’s law, almost all of them relied on analogies, hypotheses or postulates that left them 
incomplete. The first extension to three-dimensions and to non-isotropic materials was reported by Hall [7], who intro-
duced a permeability tensor, which is also based on some pre-requisites (see in particular Eq. (17) therein and the way the 
permeability is identified).

Despite the lack of formal derivation of Darcy’s law, which can be expressed for a 1D flow in the x-direction as [8]

q = − K s

μ

∂〈pβ〉β
∂x

(2)

the meaning of the permeability and its relationship to the underlying pore structure focused closed attention. In the above 
expression, K is the permeability having units of m2 and μ the fluid viscosity. In addition, 〈pβ 〉β is the intrinsically-averaged 
pressure in the porous medium, defined as:

〈pβ〉β = 1

Vβ

∫
Vβ

pβ dV (3)

Here, Vβ is the domain (of volume Vβ ) occupied by the fluid phase β within a representative averaging domain (or REV) 
(see Fig. 1), and pβ is the pore-scale pressure.

An early estimate of K was inspired by an analysis due to Blake in 1922 [9] of flow over packings of grains of different 
shapes and a comparison to flows in capillary tubes that resulted in the following estimate

K = 1

k0 S2
0

ε3

(1 − ε)2
(4)

where ε is the porous medium porosity, S0 denotes the specific surface of the particles and it is defined as the ratio of the 
area of the particle to its volume. The coefficient S0, related to the effective particle diameter, dp , was identified from an 
analogy with spherical particles by

S0 = 6

dp
(5)

2 In [1], H. Darcy indicated that k “depends on the permeability of the sand layer”. In fact, k is the hydraulic conductivity, having the unit of a length per 
unit time. The intrinsic permeability as a physical quantity, denoted by K (or K in tensorial form) in the present article, appeared later in the literature. It 
seems that M. Muskat (see for instance [2]) was the first who used this coefficient.
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