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In [1], we studied the response of a thin homogeneous piezoelectric patch perfectly bonded 
to an elastic body. Here we extend this study to the case of a very thin heterogeneous patch 
made of a periodic distribution of piezoelectric inclusions embedded in a linearly elastic 
matrix and perfectly bonded to an elastic body. Through a rigorous mathematical analysis, 
we show that various asymptotic models arise, depending on the electromechanical loading 
together with the relative behavior between the thickness of the patch and the size of the 
piezoelectric inclusions.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As the essential technological interest of piezoelectric patches is the monitoring of a deformable body they are bonded 
to, here, in the same spirit as [1], we intend to propose various asymptotic models for the behavior of the body through the 
study of the system constituted by a very thin patch made of a periodic distribution of piezoelectric inclusions embedded 
in a linearly elastic matrix (studied in [2,3]) perfectly bonded to a linearly elastic three-dimensional body.

A reference configuration for the linearly elastic body is a domain � of R3 assimilated to the Euclidean physical space 
with basis { e1, e2, e3 }. The set � lies in { x3 < 0 } and a part of its Lipschitz-continuous boundary ∂� is a nonempty domain 
S of { x3 = 0 } such that S × (−L, 0) is included in � for some positive real number L. The patch perfectly bonded to the 
body occupies Bh = S × (0, h) and is made of a periodic distribution of linearly piezoelectric inclusions perfectly bonded to 
a linearly elastic and electrically insulated matrix. More precisely, let Y = (0, 1)2 and Y ∗ be a subdomain strongly included 
in Y and Iε = {

i ∈ Z2;ε(i + Y ) ⊂ S
}

then if s = (ε, h) is the pertinent couple of geometrical parameters of the patch, the 
piezoelectric inclusions occupy Bs

I = Sε
I × (0, h), Sε

I = ∪i∈Iε ε(i + Y ∗), while the elastic matrix occupies the remaining part 
of Bh . Let Oh := � ∪ S ∪ Bh . The body is clamped on a part �0 of ∂� \ S with a positive two-dimensional Hausdorff measure 
H2(�0) and subjected to body forces and surface forces on �1 := ∂� \ (S ∪ �0) of densities f and F . The whole patch is 
free of mechanical loading and no electric charges lay in the inclusions. We define Sδ := S + δe3, ∀δ ∈ R and, if us , e(us)

and σ s denote the fields of displacement, strain and stress in Oh and ϕs , Ds stand for the electric potential and the electric 
displacement, then part of the equations describing the electromechanical equilibriums read as:
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divσ s = f̃ in Oh us = 0 on �0 σ sn = F on �1 σ sn = 0 on Sh ∪ ∂ S × (0,h)

div Ds = 0 in Bs
I Dsn = 0 on ∂ Sε

I × (0,h)

σ s = ae(us) in � (σ s, Ds) = 1
h Mε(e(us),∇ϕs) in Bh

(1)

f̃ is the extension of f to Bh by 0, n is the unit outward normal, a denotes the elasticity tensor, which satisfies:

a ∈ L∞(�; Lin(S3)), ∃c > 0; c|e|2 ≤ a(x)e · e ∀e ∈ S3 a.e. x ∈ � (2)

where Lin(SN ) is the space of linear operators on the space SN of N × N symmetric matrices where the inner product and 
the norm are noted · and | · | as for R3. If K := S3 × R3 is equipped with an inner product and a norm also denoted as 
previously and XY ∗ and L∞

# (Y ; Lin(K)) denoting the characteristic function of Y ∗ and the space of Y periodic elements of 
L∞(R2; Lin(K)), respectively, then Mε is defined by:

Mε(x) = M(x̂/ε) ∀x ∈ Bh M ∈ L∞
# (Y ; Lin(K)) s.t. M =

[
α −XY ∗β

XY ∗βT XY ∗γ

]
(3)

with

∃κ > 0 s.t. κ |k|2 ≤ M(y)k · k a.e. y ∈ Y , ∀k ∈K (4)

and, in all the sequel, for any function w of L2(Y ∗; RN ), XY ∗ w is the function defined by XY ∗ w = 0 in Y \ Y ∗ , XY ∗ w = w
in Y ∗ .

The models indexed by p = (p̂, p3), p̂ = (p1, p2) ∈ {1,2 }2, p3 ∈ {1,2,3 } will be distinguished according to the additional 
necessary boundary conditions on Sε

I and Ss
I := Sε

I + he3. The case p1 = 1 corresponds to a condition for the electric 
displacement on Ss

I ,

Dsn = qs on Ss
I , (5)1

qs being a density of charges, while p1 = 2 corresponds to a condition of a given electrical potential:

ϕs = ϕs
0 on Ss

I (5)2

roughly speaking p1 = 1 deals with patches used as sensors, whereas p1 = 2 concerns actuators (see [4,5]). The index 
p2 accounts for the states of the interface between the piezoelectric inclusions and the body, p2 = 1 corresponds to an 
electrically impermeable interface, p2 = 2 corresponds to a grounded interface:

Dsn = 0 on Sε
I (6)1

ϕs = 0 on Sε
I . (6)2

Finally, we assume that s takes a value in a countable set with a sole cluster point such that p3 = 1, 2, 3 if and only if 
lims→0(h/ε) = 0, 1, +∞, respectively.

It will be convenient to use the following notations{
k̂ = (ê, ĝ) ê = (eαβ)α,β ∈{ 1,2 } ĝ = (g1, g2) ∀k = (e, g) ∈K

k(r) = k(v,ψ) := (e(v),∇ψ) ∀r = (v,ψ) ∈ H1(Bs
I ;R3) × H1(Bs

I )
(7)

An electromechanical state will be an element r = (v, ψ) of

V p̂ := H1
�0

(Oh;R3) × �p̂, �(1,1) = H1
ms

(Bs
I ), �(1,2) = H1

Sε
I
(Bs

I ), �(2,1) = H1
Ss

I
(Bs

I ), �(2,2) = H1
Sε

I ∪Ss
I
(Bs

I ) (8)

where for any domain G of R3, H1
�(G; R3) and H1

�(G) respectively denote the subspaces of H1(G; R3) and H1(G) of all 
elements with vanishing traces on a part � of ∂G , while H1

ms
(Bs

I ) :=
{
ϕ ∈ H1(Bs

I );
∫
ε(i+Y ∗)

ϕ(x)dx̂ = 0 ∀i ∈ Iε
}

.

One makes the following assumptions on the data:⎧⎪⎨⎪⎩
ϕε

0 denotes the restriction to S of an element of H1/2({ x3 = 0 }) still denoted by ϕε
0

( f ,F,qε) ∈ L2(�;R3) × L2(�1;R3) × L2(S),
∫
ε(i+Y ∗) qε(x̂)dx̂ = 0 ∀i ∈ Iε when p̂ = (1,1)

qs(x + he3) = qε(x), ϕs
0(x + he3) = hϕε

0 (x̂) a.e. x ∈ Sε
I

(H1)

It is well known that for all ϕε
0 in H1/2({ x3 = 0 }), there exists an element of H1(S × (−L, 0)) when p2 = 1, of

H1
S−L (S × (−L, 0)) when p2 = 2, still denoted by ϕε

0 , whose trace on S is ϕε
0 . Hence the element ϕs

0p of �p̂ defined by 
ϕs

0p(x) = hϕε
0 (x̂, (x3 − h)L/h) satisfies

ϕs
0p = ϕs

0 on Ss
I ,

1

h

∫
Bs

I

|∇ϕs
0p|2 dx ≤ C (9)
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