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a b s t r a c t

The phase and amplitude (Ph–A) of a wave function vary slowly with distance, in contrast to the wave
function that can be highly oscillatory. Hence the Ph–A representation of a wave function requires far
fewer computational mesh points than the wave function itself. In 1930 Milne presented an equation for
the phase and the amplitude functions (which is different from the one developed by Calogero), and in
1962 Seaton and Peach solved these equations iteratively. The objective of the present study is to imple-
ment Seaton and Peach’s iteration procedure with a spectral Chebyshev expansion method, and at the
same time present a non-iterative analytic solution to an approximate version of the iterative equations.
The iterations converge rapidly for the case of attractive potentials. Two numerical examples are given:
(1) for a potential that decreases with distance as 1/r3, and (2) a Coulomb potential ∝1/r . In both cases
the whole radial range of [0–2000] requires only between 25 and 100mesh points and the corresponding
accuracy is between 10−3 and 10−6. The 0th iteration (which is the WKB approximation) gives an accu-
racy of 10−2. This spectral method permits one to calculate a wave function out to large distances reliably
and economically.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When the Phase–Amplitude (Ph–A) method was first intro-
duced byMilne in 1930 [1], and then taken up bymany authors, see
Ref. [2], the main motivation was the paucity of numerical mesh
points required, compared to the calculation of the wave func-
tion itself. This is because both phase and amplitude functions
are slowly varying, as opposed to the wave function that can be
highly oscillatory. This point was verified by many authors, in par-
ticular by Calogero and Ravenhall [3] who state that the solution
for the phase is more stable than the solution of the wave func-
tion. An additional argument in favor of the Ph–A representation
is that it lends itself to analytic expressions to address particu-
lar problems. For example, the Ph–A representation facilitates the
incorporation of the effect of long range potentials [4,5] or the
calculation of resonances [2]. It is also helpful in the quantum de-
fect calculation of atomic wave functions [6], the calculation of
Gaunt Factors [7], as well as the description of an electron with
an ion embedded in a plasma [8], among others. The emission of
an electron from an atom, either by incident photons, or by other
processes such as beta decay of the nucleus also makes extensive
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use of Calogero’s Ph–A description [9]. However that method stud-
ied by Calogero [10] is different from the one described here, as is
further discussed in Appendix A. The Ph–A description of a carrier
wave in radio or television also plays a significant rôle in the com-
pactification of the signal transmission in the field of Information
Technology [11]. An additional advantage of the present Ph–A rep-
resentation is that it provides a method to improve the Wentzel,
Kramers Brillouin (WKB) [12,13] approximation of a wave func-
tion, an important point since theWKBapproximationhas led, over
the years, to a much improved understanding of the solution of
the Schrödinger equation. A further advantage for the case of long
range potentials is thatMilne’s Ph–Amethod lends itself to provide
the normalization of a conventionally obtainedwave functions cal-
culated only out to short distances, such that the amplitude of that
wave function would asymptotically approach unity, if carried out
to large distances. This normalization method does not require a
Wronskian-type matching procedure to two analytically known
basis functions.

The Ph–A representation consists in writing a wave function
ψ(r) in the form

ψ(r) = y(r) sin[φ(r)], (1)

where y is the amplitude andφ is the phase, and r the distance from
the origin. Here ψ is a partial wave function that depends only on
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the single variable r . If an overlap matrix element

M =


∞

0
ψ1(r)U(r)ψ2(r)dr (2)

between two wave functions is required, then in the finite differ-
ence method of obtaining integrals, bothψ1 andψ2 have to be cal-
culated on a sufficiently fine mesh, which can be time consuming
and prone to errors. However, the Ph–A representation can provide
an estimate ofM by decomposing the integrand of the overlapma-
trix element into a slowly oscillating (S) and a fast oscillating (F )
part

M = M(S)
− M(F). (3)

The decomposition makes use of a trigonometric identity for the
product of two sine functions with the result

M(F)
=

1
2


∞

0
y1(r)U(r)y2(r)[cos(φ1 + φ2)]dr. (4)

M(S)
=

1
2


∞

0
y1(r)U(r)y2(r)[cos(φ1 − φ2)]dr. (5)

The matrix element M(S) (S stands for slow variation, F for
fast variation of the integrand) can be calculated on a small set of
radial mesh points since the integrand oscillates slowly. Further,
since |M(F)

| < |M(F)
|, a rough estimate for M is provided by M(S)

alone. HereU(r) is an overlap function that depends on the physics
application envisaged.

In 1962 Seaton and Peach [14] presented an iterative scheme to
solveMilne’s non-linear differential equation [1] for the amplitude
and phase. It is the purpose of the present work to implement this
iterative method by means of a spectral [15,16] expansion of the
amplitude in terms of Chebyshev polynomials. A further purpose
is to examine the accuracy of the resulting Ph–A wave function
by comparison with the direct solution of the Schrödinger equa-
tion for the wave function, the latter is also obtained by an accu-
rate spectral integral equation method [17,18], denoted as IEM in
what follows. The combination of both objectives has not been pre-
sented previously. The great advantage of a spectral expansion is
that the calculations utilize all the support points located in a given
partition simultaneously, with the result that the errors are shared
uniformly across the partition in the case of Chebyshev expan-
sions [19,20]. For the present numerical examples the calculation
is done in one great radial partition, extending from r = 0 to r =

2000, containing between 25 and 201 Chebyshev support points,
depending on the accuracy required. By contrast, other algorithms
(such as finite elements, finite differences, or the IEM method de-
scribed below) divide such a large radial interval into a number of
partitions, with the result that the accumulated error from all pre-
vious partitions is propagated into the next one, the last partition
having the largest error [21]. An analysis of the accumulation of the
Finite Element errors is presented in Appendix B. In addition, for
calculations that require the storage of many wave functions with
high precision [22–25] the use of the Ph–A representation can be
very advantageous because the amount of storage required can be
substantially smaller than what is needed for other algorithms.

In Section 2 the iterative method is explained, Section 3 con-
tains details of the computational spectral method, Section 4 de-
scribes a non-iterative analytic solution to an approximate set of
iterative equations, Section 5 establishes a connection between
a wave function and the corresponding values of the phase and
amplitude, Section 6 contains numerical results, the calculation of
overlap integrals is described in Section 7, the Summary and Con-
clusions are given in Section 8. In Appendix A it is shown that the
Ph–A combination defined by Calogero is not the same as the one
defined byMilne, even thoughbothmethods lead to the samewave
functionψ , and in Appendix B it is argued that a Gauss–Lobatto fi-
nite element method cannot reach large distances with the same
accuracy as the Ph–A method.

2. Iterative solution of Milne’s phase–amplitude equation

The Schrödinger equation to be solved for a partial wave
function ψ is

d2ψ/dr2 + k2ψ = VT ψ. (6)

The total potential VT is

VT (r) = L(L + 1)/r2 + V (r), (7)

where V (r) is the atomic or nuclear potential (including the
Coulomb potential) in units of inverse length squared, and L is the
orbital angular momentum quantum number. Milne’s non-linear
equation for the amplitude y(r) is given by [1]

d2y/dr2 + k2y = VT y + k2/y3, (8)

where the nonlinearity is given by the last term in Eq. (8). In Eqs. (6)
to (8) the factor }2/2m has already been divided into the potential
and into the energy, so that both are given in units of inverse length
squared, and the wave number k is given in units of inverse length.
The unit of length can be either fm for nuclear physics applications,
or the Bohr radius a0 for atomic physics applications, butwill not be
explicitly indicated. The phaseφ(r) is obtained from the amplitude
y by [1]

φ(r) = φ(r0)+ k
 r

r0
[y(r ′)]−2 dr ′, (9)

but it can also be obtained without the knowledge of y [7]. Eqs.
(8) and (9) can be obtained by inserting Eq. (1) into Eq. (6), not-
ing that the terms involving the phase φ(r) can be separated from
the terms involving the amplitude y(r), and each collection of
terms can be set to zero independently. An overall normalization
is still arbitrary, but it can be fixed by demanding close agreement
with the WKB approximation [12,13]. Eqs. (8) and (9) lead to a
phase–amplitude representation of the wave function that is dif-
ferent from the one described by Calogero [10], in that Eqs. (8)
and (9) do not require the definition of auxiliary basis functions,
as is the case for the Calogero method, and the phase is obtained
from the amplitude, while the reverse is the case for the Calogero
method. Details are given in Appendix A.

Eq. (8) has been solved non-iteratively in the past by using
some form of a finite difference computational method, such as
one of Milne’s predictor–corrector methods [26], or [8] by a Bu-
lirsch–Stoer limit method [27], none of which will be used in the
present study.

The iterative method of Seaton and Peach [14] consists in
rewriting Eq. (8) in the form

k2

y4
= w +

1
y
d2y
dr2

(10)

where

w(r) = k2 − VT , (11)

and calculating the solution of Eq. (10) by means of the itera-
tion [14]

k
y2n+1

=


w +

1
yn

d2yn
dr2

1/2

, n = 0, 1, 2, . . . . (12)

Here n denotes the order of the iteration, and the initial value of y
is given by the WKB approximation [12,13]

k
y20

= w1/2. (13)

The advantage of formulating the iteration according to Eq. (12)
is that y varies slowly with r , automatically approaching unity at
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