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In this work, two adaptations of the particle method allowing one to reduce the numerical 
errors induced by the non-zero divergence of flow fields in the numerical simulations 
of particle transport are presented. The first adaptation is based on the renormalization 
method allowing one to use an irregular distribution of particles induced by the non-zero 
divergence of flow fields. The second adaptation consists in applying a correction on the 
weight of the particles by using the relation between the divergence of flow fields and the 
particles’ volume evolution. This adaptation may be considered as a relaxation method. The 
accuracy of both methods is evaluated by simulating the transport of an inert tracer by the 
flow of a jet in crossflow whose concentration fields were measured experimentally. The 
comparison between the numerical and experimental results shows clearly that the two 
adaptations of the particle method correct efficiently the effect of a non-zero divergence 
velocity field on the computed concentration.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The numerical simulations of particle transport involves several difficulties, which have been widely addressed, partic-
ularly that of the numerical stability. Among the numerous discretization methods proposed to solve this problem, those 
using Lagrangian coordinates have a particular place since they usually yield new difficulties while naturally solving the sta-
bility issue. Using particles requires the computation of their trajectories, which can be readily achieved with a Runge–Kutta 
high-order scheme. However, the results have been found to be very sensitive to the quality of the velocity field approxima-
tion, particularly regarding the satisfaction of the divergence-free condition. Such errors result in the existence within the 
flow field of sources and sinks which in some cases yield non-physical crossing trajectories [1,2]. Another consequence is 
the non-uniformity of the particle distribution, which implicitly yields particles with non-constant volume or surface [3,4]. 
The solution to these problems requires the design of specific solutions, particularly when the Lagrangian coordinates are 
used to solve the flow equations. There are basically two families of particle methods used for the flow simulation: the 
SPH method [5,6], and the vortex method [7,8]. In both cases, some methods have been proposed to overcome the non-
divergence-free problem. In the last case, the difficulty is even greater for three-dimensional flows because not only the 
velocity field, but also the vorticity field as well, must be divergence free. In this paper, we consider the rather different and 
somewhat simpler problem of the transport of inert tracer particles by a given flow field. This flow can result either from 
a numerical CFD calculation or of an experimental PIV velocity field. In both cases, the divergence is only approximately 
zero and techniques derived from the previously mentioned works can be applied. These two different ways to solve this 
problem are described hereafter and tested on a measured 3D velocity field [9,10].
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2. Particle method

2.1. Approximated concentration field

As usual in the particle method, the concentration field c(x, t) is discretized in a set of numerical particles. Each particle 
Pi is defined by its location Xi(t) and its weight Ci(t):

Xi(t) =
∫

σi

x(t)dv/

∫

σi

dv and Ci(t) =
∫

σi

c(x, t)dv (1)

where σi denotes the support surface or volume of the particle Pi . σi is usually constant for an incompressible flow. Thanks 
to the particle discretization, the concentration field c(x, t) can be estimated by means of a sum of products of weight Ci(t)
and Dirac measure δ(x):

c(x, t) =
∫

Rd

c(x′, t) δ(x′ − x) =
∑

i

Ci(t) δ(Xi(t) − x) (2)

where d is the space dimension. In order to obtain a continuous approximation of the concentration field ch(x, t), the Dirac 
measure δ(x) is approximated by a smooth function ζε(x) in the previous equation:

ch(x, t) =
∑

i

Ci(t) ζε(Xi(t) − x) with ζε(x) = (1/εd)ζ(x/ε) (3)

where ε is the smoothing parameter proportional to the diameter of the numerical particles. In order to check the consis-
tency of Eq. (3), the smoothing function ζε(x) has to satisfy momentum conditions:∫

Rd

ζε(x)dx = 1 and
∫

Rd

xζε(x)dx = 1 (4)

As the approximated concentration field ch(x, t) is a sum of products of Ci(t) and ζε(Xi(t) − x), an irregular particle distri-
bution will lead to a shaky approximation of the concentration field ch(x, t).

2.2. Lagrangian transport equations

In the case of pure advection, the transport equation of an inert tracer can be written as follows:

∂c(x, t)

∂t
+ ∇(u(x, t)c(x, t)) = 0 (5)

where u(x, t) is the velocity field. In the particle method, this transport equation is written in a Lagrangian framework 
yielding the discrete approximation:

dXi(t)

dt
= u(Xi, t) and

dCi(t)

dt
= 0 (6)

The first equation can be numerically solved by using a 4th-order accurate Runge–Kutta scheme. As the transport equation 
is an advection equation (Eq. (5)), the weight Ci(t) of a numerical particle Pi is constant (Eq. (6), right). Thus the particle 
method is a conservative method in this case.

2.3. Renormalized smoothing function

The discrete form of the first moment condition (Eq. (4), left) reads:

1(x, t) =
∑

i

ζε(Xi(t) − x) (7)

The previous equation is equal to 1 as long as the particle volumes remain constant. This is not the case of flow fields with 
a non-zero divergence where an irregular particle distribution can appear. This problem has been addressed by Gingold 
and Monaghan [5,6], who proposed the renormalization method. This method consists in dividing Eq. (3) (left) by the 
renormalization coefficient 1(x, t) defined by Eq. (7). As a result, the approximated concentration field ch(x, t) reads:

ch(x, t)

1(x, t)
=

∑
i Ci(t)ζε(Xi(t) − x)∑

i ζε(Xi(t) − x)
(8)

The renormalization coefficient 1(x, t) accounts for the actual volume variations of numerical particles. In the paper, the 
renormalization method will be denoted RSF (Renormalized Smoothing Function).
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