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a b s t r a c t 

The most widely used theory in the analysis of nanostructures is Eringen’s nonlocal elas- 

ticity theory. But many researchers have mentioned that this theory has a paradox for the 

cantilever boundary condition. In order to overcome this paradox, different methods of 

mathematical complications have been applied. By adding additional parameters to Erin- 

gen’s nonlocal elasticity theory, enhanced Eringen differential model was developed as 

an alternative solution method without the necessity of these complications. In this pa- 

per, bending of nano/micro beams under the concentrated and distributed loads has been 

investigated by using Euler Bernoulli beam theory via the enhanced Eringen differential 

model. Singularity function method is used to calculate the deflection of concentrated 

and distributed loaded beam. Various types of boundary conditions are considered for the 

beam such as cantilever, clamped, propped cantilever and simply supported. In each case 

of boundary conditions, closed form solutions for the bending of the beam are presented 

for various loading locations. Deflection, bending moment and shear force are presented 

comparatively for variable loadings in figures and tables. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nano/micro sized devices and systems have been developed and being used extensively in many applications, such as 

microsensors, microactuators, atomic force microscopes (AFMs), nanoelectromechanical and microelectromechanical systems 

mass detection, frequency synthesis. With nanoscience and nanotechnology, a new era has begun for many areas (chemical, 

medicine, engineering, electronics, etc.). Some of recent applications of nanobeams in engineering structures are nonvolatile 

random access memory, nanotweezers, tunable oscillator, rotational motors, nanorelays, feedback-controlled nanocantilevers. 

These nanodevices have great importance in the rise of nanotechnology. Nonvolatile random access memory (NVRAM) re- 

tains its information when power is turned off. NVRAM is mostly used in flash memory devices. Nanobeams and nanos- 

tructures provide to read and write information into bigger blocks due to their very small size and density comparing to 

older silicon based random access memories. Another nanostructure which is commonly used in engineering application is 

nanotweezer. Nanotweezer is a nanodevice which is composed of two carbon nanotube arms which are cantilevered. It is 

used for the manipulation of nanostructures and two-tip scanning-tunneling microscope (STM) or atomic force microscope 

(AFM) ( Akita et al., 2001; Kim & Lieber, 1999 ). On the other hand, rotational motors are used in nanoactuators and they 

provide to transmit electromagnetic radiation ( Fennimore et al., 2003 ). Furthermore, tunable oscillators are generally used 

to transduce very small forces. Besides these devices nanorelays and feedback-controlled nanocantilevers are used to turn 

on/off electric circuits in almost every nanodevices. This paper aim to simulate to bending behavior of nanostructures in- 
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cluding the size effect such as Carbon nanotube, Silicon carbide nanotube, Boron nitrite nanotube etc. more precision and 

realistic than classical continuum models. 

For the application of nano/micro structures, it is necessary to predetermine first the device characteristics at the design 

level. It has been experimentally observed that many nano/micro structured materials under bending load have size depen- 

dent parameters which affect their mechanical properties. Experimental research is very difficult and expensive. Some meth- 

ods such as Hybrid atomistic–continuum mechanics and related to the atomic modeling; molecular dynamics, tight-binding 

molecular dynamics, the density functional theory take the size effect into account. But solutions with these methods are 

very time-consuming and require high-capacity computers. For this reasons, researchers had turn towards to the theoretical 

analysis (continuum mechanics). 

For materials which are sized in nano/micro scale, the size effect is significant ( Kahrobaiyan, Asghari, Rahaeifard, & Ah- 

madian, 2010; Narendara, Mahapatra, & Gopalakrishnan, 2011; Shaat & Abdelkefi, 2015; Uzhegova, Svistkov, Lauke, & Hein- 

rich, 2014 ). But classical continuum mechanics does not take into account the small scale effect. Thus, various theories have 

been developed that give importance to the effects of small scale such as strain gradient theory ( Akgoz & Civalek, 2011 , 

2013 , 2014; Fleck & Hutchinson, 1997; Kahrobaiyan, Asghari, Rahaeifard, & Ahmadian, 2011; Lam, Yang, Chong, Wang, & 

Tong, 2003 ), modified couple stress theory ( Asghari, Kahrobaiyan, & Ahmadian, 2010; Farokhi, Ghayesh, & Gholipour, 2017; 

Hosseini & Bahaadini, 2016; Ma, Gao, & Reddy, 2008; Mojahedi, 2017; Park & Gao, 2006; Shafiei, Kazemi, & Ghadiri, 2016; 

Simsek & Reddy, 2013 ), nonlocal elasticity theory ( Ebrahimi & Barati, 2016; Eringen, 1972 , 1981 ), nonlocal strain gradient 

theory ( Ebrahimi, Barati, & Dabbagh, 2016; Li & Hu, 2016; Li, Li, & Hu, 2016 ), surface elasticity ( Attia, 2017; Kiani, 2016; 

Sahmani, Bahrami, & Aghdam, 2016 ). The nonlocal elasticity theory, which adds the atom length scales to the constitu- 

tive equations, is the most commonly used theory. Applying first the nonlocal elasticity theory to nanotechnology is by 

Peddieson, Buchanan, and McNitt (2003) . They investigated the bending of the nano-micro scaled beam and importance of 

small-scale length. Wang and Liew (2007) observed the static deformation of Euler and Timoshenko beam subjected to a 

point load. Wang and Shindo (2006) have investigated the bending of carbon nanotube with the small scale effect under dis- 

tributed and concentrated loads. Nejad and Hadi (2016a) studied the static bending analysis of Euler–Bernoulli nanobeams 

made of bi-directional functionally graded material with nonlocal elasticity theory. Li and Hu (2016) have studied bend- 

ing and free vibration analysis of functionally graded Timoshenko beam with the nonlocal strain gradient elasticity theory. 

Application of nonlocal continuum mechanics for nano/micro structures have been implemented by many researchers for 

static and dynamic analysis ( Nejad & Hadi, 2016b; Nejad, Hadi, & Rastgoo, 2016; Reddy, 2007; Reddy & Pang, 2008; Thai, 

2012 ). In recent times, the mechanical behaviors of small-sized devices in micro/nano-electromechanical systems have been 

determined by applying nonlocal elasticity theory. For instance, frequency analysis of carbon nanotube based cantilever 

biosensors is performed via nonlocal elasticity theory ( Murmu & Adhikari, 2012 ). In another study, single-layered graphene 

sheets (SLGSs) are modeled as a nanoscale label-free mass sensor and the vibrational response of these structures is inves- 

tigated by nonlocal elasticity theory ( Murmu & Adhikari, 2013 ). In addition, the pull-in instability of nano-switches under 

electrostatic and intermolecular forces is studied within the framework of nonlocal elasticity theory ( Taghavi & Nahvi, 2013; 

Yang, Jia, & Kitipornchai, 2008 ). Similarly, dynamic pull-in stability of functionally graded nano-actuators is examined based 

on nonlocal elasticity theory by considering Casimir attraction ( Sedighi, Daneshmand, & Abadyan, 2016 ). The studies about 

the application of the nonlocal elasticity theory in modeling of carbon nanotubes and graphene sheets are reviewed by 

Arash and Wang (2012) . 

Most of articles have investigated bending, buckling and vibration analyses using the simplified nonlocal elastic model. 

To be able to follow the technology rapidly, however, the most important factors is to recognize the nanostructures, the 

correct modeling and the correct solution method. Making the wrong solution causes incorrect design. Several authors de- 

clared a discrepancy between the results which are obtained by Eringen differential model (EDM) from other boundary 

conditions than cantilever beam ( Barretta, Feo, Luciano, & de Sciarra, 2016; Challamel & Wang, 2008; Challamel et al., 2014; 

Challamel, Reddy, & Wang, 2016; Fernández-Sáez, Zaera, Loya, & Reddy, 2016; Khodabakhshi & Reddy, 2015; Romano & Bar- 

retta, 2017; Tuna & Kirca, 2016 ). The paradoxes are about the solution of beam problems. One of them is at the cantilever 

beam under point load at the end, there is no effect of small scale parameter. Another problem is when a distributed load 

is applied, softening effect is observed in all other boundary conditions, but stiffening effect occurs in the cantilever bound- 

ary condition. Challamel et al. (2016) said that this paradox can be derived from a superposition of an integral non-local 

elastic model based on the combination of local and non-local curvatures in the constitutive elastic relation. Fernández- 

Sáez et al. (2016) pointed out that the solution of the Eringen integral equation coincided with the differential form of 

the Eringen model if the relevant boundary conditions ( Benvenuti & Simone, 2013; Polyanin & Manzhirov, 2008 ) are used. 

They suggest a general method for solving the integral equation. The results were compared with the widely used differen- 

tial Eringen model. Challamel et al. (2016) solved this paradox with the nonlocal differential model itself via some related 

discontinuous nonlocal kinematics. They have shown that the kinematics of nonlocal constitutive law leads to the use of 

moment or shear discontinuities. Many researchers suggested different methods to solve this problem ( Lu, Guo, & Zhao, 

2017; Romano & Barretta, 2017; Tuna & Kirca, 2017; Zhu, Wang & Dai, 2017 ). Khodabakhshi and Reddy (2015) investigated 

the behavior of Euler–Bernoulli beams under transverse loads. They developed a general finite element formulation for lo- 

cal/nonlocal two phase integral equations. Recently, Lim, Zhang, and Reddy (2015) have done wave propagation analysis by 

providing a high-level model that combines strain gradients and non-local stresses. Romano and Barretta (2017) Investigated 

the stress-driven integral model for nonlocal elasticity. Finally, Barretta et al. (2016) have identified a simple constitutive 

strategy for nanotechnological applications by replacing the problematic (but popular) Eringen differential law with a more 
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