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a b s t r a c t

We develop a generalized numerical optimization algorithm for the rotationally invariant multi-orbital
slave boson approach, which is applicable for arbitrary boundary constraints of high-dimensional objec-
tive function by combining several classical optimization techniques. After constructing the calculation
architecture of rotationally invariant multi-orbital slave boson model, we apply this optimization algo-
rithm to find the stable ground state and magnetic configuration of two-orbital Hubbard models. The
numerical results are consistent with available solutions, confirming the correctness and accuracy of our
present algorithm. Furthermore, we utilize it to explore the effects of the transverse Hund’s coupling
terms on metal–insulator transition, orbital selective Mott phase and magnetism. These results show the
quick convergency and robust stable character of our algorithm in searching the optimized solution of
strongly correlated electron systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Introducing auxiliary bosons to strongly correlated fermionic
systems is an important method for many-body physics, such as
the slave boson, the slave spin and slave rotor techniques [1–3].
Amongst these approaches, the Kotliar–Ruckenstein slave boson
approach [1] is a very useful tool in dealing with correlated elec-
tron system. In this approach, the Hilbert space is enlarged to in-
clude fermionic and auxiliary slave bosonic degrees of freedom.
The fermionic degree of freedom describes Landau quasiparticles,
and the bosonic degrees describe the local states [4]. By setting
a series of constraints, which select the physical states out of en-
largedHilbert space, the local physical configurations can be coher-
ently described by the fermionic and bosonic degrees of freedom.

Slave-bosonmean-field theory is mainly developed to calculate
the quasiparticle (QP) weight of correlated electron systems, and a
part of spin andorbital fluctuations is taken into account. The Fermi
surfaces of the correlated systems are determined by theQPweight
and Lagrange multipliers, which globally ensure the physical con-
straints. The slave-boson mean-field theory is able to eliminate lo-
cal repulsive interaction through introducing local constraints, and
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projects a highly correlated system into an uncorrelated state [1].
Thus it is convenient to deal with complicated spin and orbital-
ordered states [5–7], superconductive state [4] and spin liquid
state [8]. The high-energy fluctuation processes could also be de-
scribed by the auxiliary boson fields [9].

The single-orbital slave-boson functional-integral method in-
troduced by Kotliar and Ruckenstein [1] was extended to two-
orbital degenerate Hubbard model by Hasegawa et al. [5,10,11],
hence could be used to investigate multi-orbital metal–insulator
transitions. However, the multi-orbital Kotliar–Ruckenstein slave
boson (KRSB) method is only suitable to handle with the model
Hamiltonian with density–density interactions [1,12]. The rota-
tionally invariant slave boson (RISB) method was proposed by
Wölfle et al. [13,14] and generalized to multi-orbital case by
Lechermann et al. [12,15–17]. In the complicated magnetic con-
figurations or multiorbital systems, the number of slave bosons
increases exponentially with the increase of the number of free-
dom degrees, the slave-bosonmean-field approximation still costs
much computation resource when searching for the ground state
of multi-orbital correlated systems, even in the KRSB frame-
work [18,19]. Meanwhile, when we further consider the contribu-
tions of the spin flip and pair hopping terms to reveal the roles of
spin and orbital fluctuations, the RISB method should be applied,
and we need to optimize a total-energy problem with many slave
boson variables. In this case, the classical single optimization tech-
nique hardly finishes such a task. So it is desirable to develop a
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Fig. 1. The atomic spin and orbital configurations of two-orbital system and the corresponding slave bosons. Here e, p, b, d, t , q denote states from empty to four occupations
in the corresponding graphs. The first group numbers in the indexes of slave bosons, for example ee(0000,0000) , etc., describe the occupations on electron species in the
sequence of (spin up of orbital 1, spin down of orbital 1, spin up of orbital 2 and spin down of orbital 2) in the physical Fock state, the second group numbers in the indexes
have the similar meaning in the QP Fock state, where 0 denotes empty and 1 is occupied.

more efficient and stable numerical algorithm for both the KRSB
and RISB methods.

In this paper, we develop a numerical optimization algorithm
by synthesizing the pattern search method [20], the gradient
method [21] and the Rosenbrock technique [22]. This algorithm is
applicable for arbitrary boundary constraint of the objective func-
tion. Then we employ it to search for the ground state of the two-
orbital Hubbard model in the RISB framework, and discuss the
effects of spin–flip and pair-hopping Hund’s rule coupling terms
on Mott metal–insulator transition and magnetic moments. The
comparisons between our solutions and available results confirm
that the present algorithm is accurate, efficient and stable for nu-
merically optimizing the total energy of multi-orbital slave boson
approach. The rest of this paper is organized as follows: we firstly
describe the model Hamiltonian and theoretical approach in Sec-
tion 2; then the numerical optimization algorithm and numerical
method for two-orbital slave-boson approach are described in Sec-
tion 3; in Section 4, the numerical accuracy and stability of our al-
gorithm applied for two-orbital RISB model are analyzed; finally
the concluding remarks are given in Section 5.

2. Rotationally invariant slave boson formulas of two-orbital
Hubbard model

To describe the low-energy physical processes in strongly cor-
related electron systems, we usually adopt the multi-orbital Hub-
bard model Hamiltonian, which can be written in the following
form:

H = H0 + HI (1)

with

H0 = −


⟨ij⟩,α,β,σ


tα,β

ij dĎiασdjβ,σ + h.c.


+


i,α,σ

(εα − µ) niασ (2)

and

HI = U

i,α

niα↑niα↓ +


i,σ ,σ ′,α>β


U ′

− JZδσσ ′


niασniβσ ′

− JX
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diα↓d
Ď
iβ↓

diβ↑


+ JP


i,α≠β


dĎiα↑

dĎiα↓
diβ↓diβ↑


(3)

where dĎiασ creates an electron with the orbital index α and spin
σ at the lattice site i, niασ denotes the corresponding occupa-
tion number operator, εα is the energy level of the α orbital, µ
is the chemical potential. The hopping integral between two or-
bitalsα andβ is denoted by tαβ

ij , and the intra-orbital (inter-orbital)
Coulomb repulsion isU (U ′). The density–density interaction term,
spin–flip term and pair-hopping term of the Hund’s rule coupling
are denoted by JZ , JX and JP , respectively. Throughout this paper we
set U ′

= U − 2JZ and JZ = 0.25U , and the two orbitals are degen-
erate, i.e. ε1 = ε2.

Next, we project the original Hamiltonian (1) into the RISB rep-
resentation. In the RISB framework (see the Appendix), sixteen

Fock states in two-orbital case are shown in Fig. 1, which have been
used for the two-orbital KRSB model [23], the corresponding slave
bosons are plotted. It is obviously that the electron occupations as-
sociated with physical space are identical to those associated with
QP space in KRSB method. We chose these Fock states as the bases
of the physical and QP spaces. The matrix that is made up of 256
slave bosons is shown in Fig. 2. The local atomic Fock bases in phys-
ical and QP spaces are also plotted at the heads of each row and
line. The same sequences of the Fock bases in the physical and QP
spaces are adopted, thus the KRSB fields only appear in the diag-
onal. The off-diagonal slave bosons are classified into six groups,
according to their described physics as shown Fig. 2. For example,
the off-diagonal slave bosons in the SR region describe the physics
with regard to the spin-rotation symmetry. The off-diagonal slave
bosons between different lattices are neglected since the inter-
action between different lattices is not considered in the present
two-orbital Hubbard model. As shown in the Appendix, in the
rotational-invariant saddle-point approximation, the complicated
model Hamiltonian given by Eqs. (1) and (2) reduces to a optimiza-
tion problem of total energy functional, see Eqs. (A.12) and (A.13).

In the saddle-point approximation, the total energy of two-
orbital Hubbard model is given by:

Egs = Ekin + Eloc (4)

with

Ekin =


RĎ

A 0
0 RĎ

B
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RA 0
0 RB


+
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0 3B


+
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(5)

and

Eloc = tr
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. (6)

Here ε(k) is the energy dispersion matrix of the system. RA and RB
in Eq. (5) are the renormalization factor matrices of lattices A and
B defined by Eq. (A.5), which is written in a more compact matrix
form as follows:

Ra = CaMT
a (7)

with

Caαγ =


ij

[Da ◦ (8aFa8a)]ij, (8)

where 8a is the slave boson matrix, and the symbol ‘◦’ denotes
Hadamardproduct. The index adenotes sublattice Aor sublattice B.
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