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a b s t r a c t 

We study the time-dependent and plane strain deformations of a circular inhomogeneity 

bonded to an infinite matrix through a multilayer interphase when subjected to uniform 

remote stresses. Both interfacial diffusion and rate-dependent sliding occur on all the ex- 

isting interfaces between two neighboring phases. The problem is solved effectively and el- 

egantly by means of the complex variable method together with the state-space approach. 

The state variables are just the unknown coefficients appearing in the analytic functions 

defined in all the phases of the composite. Numerical results are presented to demonstrate 

the obtained solution. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Stress relaxation around a circular or spherical inhomogeneity caused by interfacial diffusion and/or rate-dependent slid- 

ing has been extensively examined by researchers (see, for example, He & Hu, 2002; He & Zhao, 20 0 0; Koeller & Raj, 1978; 

Mori, Okabe, & Mura, 1980; Onaka, Huang, Wakashima, & Mori, 1998, 1999; Wang & Pan, 2010; Wang, Wang, & Schiavone, 

2016 ). The long-range mass transport by diffusion is driven by gradients of the normal traction (or gradients of chemical 

potential) along the interfaces whilst the short-range mass transport by sliding is due to the asperities on the interfaces 

leading to tension and compression ( Herring, 1950; Raj & Ashby, 1971; Sofronis & McMeeking, 1994; Wei, Bower, & Gao, 

2008 ). In the previous discussions, it was assumed that the inhomogeneity is bonded to the surrounding infinite matrix 

through a sharp interface permitting diffusion and/or sliding. In the modern design of composites, however, an intermedi- 

ate graded interphase composed of multiple interphase layers with stepwise homogeneous thermoelastic properties exists 

between the internal inhomogeneity and the surrounding matrix mainly with a goal to reduce thermal stresses ( Ru, 1999; 

Suresh & Mortensen, 1997; Tanaka, Tanaka, Watanabe, Poterasu, & Sugano, 1993 ). In the solution by Ru (1999) for a circular 

inhomogeneity with a stepwise graded interphase under thermomechanical loadings, the inhomogeneity, interphase layers 

and the matrix are perfectly bonded across the concentric circular interfaces. 

In this work, we study the transient stress relaxation around a circular elastic inhomogeneity with N − 2 co-axial inter- 

phase layers caused by the combination of diffusion and sliding on all the existing interfaces when the matrix is subjected to 

uniform in-plane stresses at infinity. The problem is solved by means of the complex variable method ( Muskhelishvili, 1953 ) 
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and the state-space approach in which the state variables are just the 4 N unknown coefficients in the analytic functions de- 

fined in the N phases of the composite. The general solution to the state-space equation is derived by solving a generalized 

eigenvalue problem and by imposing the condition that there is no displacement jump across the interfaces at the initial 

time. Several numerical examples are then presented to demonstrate the obtained solution. 

2. Basic formulation 

For plane-strain deformations of elastically isotropic materials, the stresses ( σ ij ), the associated displacements ( u 1 , u 2 ) 

and the stress functions ( φ1 , φ2 ) can be expressed concisely in terms of two analytic functions ϕ( z ) and ψ( z ) of the complex 

variable z = x 1 + i x 2 = r exp (i θ ) with r and θ being the polar coordinates as ( Muskhelishvili, 1953; Ting, 1996) 

σ11 + σ22 = 2 

[
ϕ 

′ (z) + ϕ 

′ (z) 
]
, 

σ22 − σ11 + 2i σ12 = 2 

[
z̄ ϕ 

′′ (z) + ψ 

′ (z) 
]
, (1) 

2 μ( u 1 + i u 2 ) = κϕ(z) − z ϕ 

′ (z) − ψ(z) , 

φ1 + i φ2 = i 
[
ϕ(z) + z ϕ 

′ (z) + ψ(z) 
]
, (2) 

where κ = 3 − 4 ν with ν(0 ≤ν ≤ 1/2) being the Poisson’s ratio, and μ is the shear modulus. In addition, the stresses are 

related to the stress functions through ( Ting, 1996 ) 

σ11 = −φ1 , 2 , σ12 = φ1 , 1 , 

σ21 = −φ2 , 2 , σ22 = φ2 , 1 . (3) 

As shown in Fig. 1 , we consider the plane-strain deformations of a circular elastic inhomogeneity bonded to an infinite 

matrix through N − 2 concentric circular interphase layers. Let S 1 , S k ( k = 2 , 3 , . . . , N − 1) and S N denote the inhomogeneity, 

the N − 2 interphase layers and the matrix, respectively, which are imperfectly bonded across the N − 1 concentric circular 

circles r = R k (k = 1 , 2 , . . . , N − 1) . The subscript k or the superscript ( k ) is used to denote the quantities in S k . The matrix is 

subjected to remote uniform in-plane stresses (σ∞ 

11 , σ
∞ 

22 ) . 

The interfacial diffusion and sliding conditions are specified as follows 

σ (k +1) 
rr = σ (k ) 

rr , σ (k +1) 
rθ

= σ (k ) 
rθ

, 

˙ u 

(k ) 
r − ˙ u 

(k +1) 
r = 

D k 

R 

2 
k 

∂ 2 σ (k ) 
rr 

∂ θ2 
, ηk 

[
˙ u 

(k +1) 
θ

− ˙ u 

(k ) 
θ

]
= σ (k ) 

rθ
, at r = R k , k = 1 , 2 , . . . , N − 1 , (4) 

where the overdot denotes differentiation with respect to the time t; D k and ηk are respectively the interface diffusion 

constant and viscosity for the interface r = R k . 

3. The general solution 

When the remote loading is hydrostatic ( σ∞ 

11 = σ∞ 

22 ), the interfacial diffusion and sliding are both absent on all the in- 

terfaces due to the fact that the uniform normal stress and vanishing tangential stress are achieved along each interface. 

In this case, all the interfaces are perfect and the corresponding solution was obtained by Ru (1999) . In this work, we will 

concentrate on the discussion of a non-hydrostatic loading ( σ∞ 

22 
= −σ∞ 

11 
= σ0 ). By using a superposition scheme, the solution 

to a general uniform remote loading containing both the hydrostatic part and the non-hydrostatic part can be conveniently 

arrived at. For σ∞ 

22 
= −σ∞ 

11 
= σ0 , the analytic functions in the N phases take the following simple forms 

ϕ k (z) = c (k ) 
1 

z 3 + c (k ) 
2 

z −1 , ψ k (z) = c (k ) 
3 

z + c (k ) 
4 

z −3 , k = 1 , 2 , . . . , N, (5) 

where c (k ) 
1 

, c (k ) 
2 

, c (k ) 
3 

and c (k ) 
4 

are unknown time-dependent real coefficients to be determined. 

By enforcing the interface conditions in Eq. (4) , we arrive at 

χ j � j 

[
κ j+1 ̃

 R 

2 
j 

˜ R 

−2 
j 

0 − ˜ R 

−4 
j 

]
˙ y j+1 + γ j � j 

[
−3 ̃

 R 

2 
j 

κ j+1 ̃
 R 

−2 
j 

−1 0 

]
˙ y j+1 

−χ j 

[
κ j ̃

 R 

2 
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−2 
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−4 
j 
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˙ y j − γ j 

[
−3 ̃
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2 
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κ j ̃
 R 

−2 
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˙ y j 
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]
( y j − y j+1 ) = 0 , j = 1 , 2 , . . . , N − 1 , (6) 
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