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a b s t r a c t 

A set of six, independent, stress/strain, conjugate pairs are derived: One for dilation, two 

for squeeze, and three for shear. They follow from a Gram–Schmidt factorization of the 

deformation gradient. Theories for elastic solids are derived in terms of these conjugate 

pairs. Anisotropy is introduced through bijective maps between tensor components and 

constituents of the basis. The boundary value problems of simple tension and uniform 

pressure are used to illustrate the effects of anisotropy, as predicted by a Hooke-like ma- 

terial model. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In 2012, Srinivasa (2012) considered a Gram–Schmidt decomposition of the deformation gradient F (an QR factorization 

of F that he denoted as Q ̃

 F ) in place of the polar decomposition (an RU factorization of F ) commonly adopted throughout 

the mechanics literature. Among the various features that a Gram–Schmidt factorization of the gradient of deformation pro- 

duces is a coordinate frame that is ‘nearly’ embedded within the material of interest. It is nearly embedded in that a truly 

embedded coordinate frame would be curvilinear with each coordinate curve being comprised of the same set of material 

particles over time ( Oldroyd, 1950 ), whereas, here the coordinate frame is taken to be rectangular Cartesian. In the coor- 

dinate frame associated with a Gram–Schmidt factorization of F , the 1 coordinate direction remains tangent to a 1 material 

curve at the origin, and the 12 coordinate plane remains tangent to a 12 material surface, cf. Srinivasa (2012 , Fig. 1) and 

Freed and Srinivasa (2015 , Fig. 1). As a student of Lodge (1964 ; 1974) , this property intrigued me. This is also an attrac- 

tive property for experimentalists. This paper exploits some of the theoretical advantages that a triangular distortion tensor 

(arising from a Gram–Schmidt decomposition of F ) has over a symmetric stretch tensor (arising from a polar decomposition 

F ) when constructing material models. 
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Tensor invariants ( Rivlin & Smith, 1969; Spencer, 1971 ) are commonly employed in the construction of constitutive theo- 

ries throughout mechanics. Although the theory is elegant, putting it into practice is not always straightforward. Rivlin and 

Saunders (1951) were the first to experience the primary weakness of this theoretical approach: Covariance between invari- 

ants hampers one’s ability to parameterize material models derived from such a theoretical structure. This deficiency was 

laid bare by Criscione (2003) and an alternative paradigm was put forward ( Criscione, Douglas, & Hunter, 2001; Criscione, 

Humphrey, Douglas, & Hunter, 20 0 0; Criscione, Sacks, & Hunter, 20 03a; 20 03b ): Construct an orthogonal set of strain invari- 

ants to use in place of those that come from the Cayley–Hamilton theorem. Adaptation of his approach has been hampered 

because of implementation challenges from the perspective of an experimentalist. This paper presents yet another attempt 

to provide a theoretical foundation for the construction of material models, hopefully overcoming some of the deficiencies 

of these prior approaches. 

Here the notion that a set of scalar-valued strain invariants used to describe the state of a material is replaced with 

the premise that a set of scalar-valued, conjugate, stress/strain, base pairs, i.e., a basis of thermodynamic origin, provides a 

more apt description for the state of a material. The author’s stress/strain base pairs are an example of Hill ’s ( 1972,1978 ) 

generalized tractions/displacements, which provide a coordinate (frame) invariant description of the work being done on a 

deformable element of mass. The author demonstrates that such a basis exists. Theories of elasticity are derived in terms of 

this basis. Bijective maps are constructed that convert tensor components into base pairs and vice versa. These maps take 

tensor fields describing an anisotropic material response and map them into a stress/strain basis belonging to an equivalent 

uniform material. Anisotropy is introduced through the map. This idea is analogous to how Karafillis and Boyce (1993) map 

the yield surface for an anisotropic metal into a plastically equivalent isotropic material. 

The paper is organized in the following manner. The kinematics described by a QR (Gram–Schmidt) factorization of 

the deformation gradient F are reviewed, with fields for a deformation gradient, velocity gradient, and spin being estab- 

lished for this rotated frame of Gram–Schmidt; they are the outputs of Algorithm 2 . The coordinate frame arising from a 

Gram–Schmidt factorization of the deformation gradient is referred to as the experimentor’s frame, because it is within this 

frame of reference that the physical components of distortion can be directly observed and readily measured ( Freed, Erel, & 

Moreno, 2017; Freed & Srinivasa, 2015; Srinivasa, 2012 ). 

The fact that the rate of distortion can be decomposed into three additive parts, independent of constitution, implies 

that the stress power can be decomposed in like manner, independent of constitution. This decomposition leads to six, 

independent, stress/strain, base pairs that are thermodynamic conjugates to one another: One for dilation, two for squeeze, 

and three for shear. Bijective maps are constructed that convert tensor components into these stress/strain-rate base pairs. 

These maps are not unique. They are modified to account for material anisotropy. At this juncture, explicit and implicit 

elastic theories are derived from their respective energy functions. Uniaxial extension of a Hooke-like material in three 

coordinate directions along with the case of uniform pressure illustrate how anisotropy manifests itself in this theoretical 

approach. A two-dimensional version of the theory has been successfully applied to composite panels ( Erel & Freed, 2017 ). 

The paper concludes with an overview of the theory. 

2. Kinematics 

Srinivasa (2012) has shown that the 3D distortion tensor ˜ F = Q 

T F derived from a QR factorization of the deformation 

gradient F , with Q being a proper orthogonal tensor, populates an upper-triangular matrix with components acquired from 

a Cholesky factorization ( Freed, 1998 ) of the Green deformation tensor C = F T F . They are assigned accordingly to Gram’s 

decomposition procedure, which is applicable for any matrix with a positive determinant, so that for the case of a gradient 

in deformation one has 

˜ F 11 = 

√ 

C 11 
˜ F 12 = 

C 12 

˜ F 11 

˜ F 13 = 

C 13 

˜ F 11 

˜ F 21 = 0 

˜ F 22 = 

√ 

C 22 − ˜ F 2 
12 

˜ F 23 = 

C 23 − ˜ F 12 ̃
 F 13 

˜ F 22 

˜ F 31 = 0 

˜ F 32 = 0 

˜ F 33 = 

√ 

C 33 − ˜ F 2 
13 

− ˜ F 2 
23 

(1) 

which have been shown to decompose into three fundamental modes, viz., 

[ ̃ F ] = [ ̃  �] [ ̃ F αβ ] [ ̃ F γ ] = 

[ 

a 0 0 

0 b 0 

0 0 c 

] 

︸ ︷︷ ︸ 
extension 

×

out-of-plane ︷ ︸︸ ︷ [ 

1 0 β
0 1 α
0 0 1 

] 

×

in-plane ︷ ︸︸ ︷ [ 

1 γ 0 

0 1 0 

0 0 1 

] 

︸ ︷︷ ︸ 
shear 

= 

[ 

a aγ aβ
0 b bα
0 0 c 

] 

(2) 

whose elements of extension and shear have physical components defined by 

a : = 

˜ F 11 , b : = 

˜ F 22 , c : = 

˜ F 33 , α : = 

˜ F 23 

˜ F 22 

, β : = 

˜ F 13 

˜ F 11 

, γ : = 

˜ F 12 

˜ F 11 

(3) 
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