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a b s t r a c t

We present a method to calculate mean square displacements (MSD) with error estimates from kinetic
Monte Carlo (KMC) simulations of diffusion processes with non-equidistant time-steps. An analytical
solution for estimating the errors is presented for the special case of one moving particle at fixed rate
constant. The method is generalized to an efficient computational algorithm that can handle any number
of moving particles or different rates in the simulated system.We showwith examples that the proposed
method gives the correct statistical error when the MSD curve describes pure Brownian motion and can
otherwise be used as an upper bound for the true error.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion processes play a hugely important role in all aspects
of human activity, from the very biological foundations of our ex-
istence to a myriad of technological applications. A detailed un-
derstanding of diffusion processes is therefore crucial in research
fields as diverse as energy production and catalysis, defect dif-
fusion and segregation in steels and alloys, and in biological and
pharmaceutical sciences.

Detailed insight into diffusion processes can be obtained from
atomic scale simulations in the form of calculated velocity auto-
correlation functions, or from mean square displacement (MSD)
data for the diffusing particles. For molecular-dynamics (MD) sim-
ulations there exist well established techniques to calculate both
velocity auto-correlation functions and MSD, and to estimate the
errors of these and derived quantities [1,2]. Related work is done
in the context of single particle tracking experiments, where tra-
jectories of measured particle positions provide data for MSD
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analysis and subsequent extraction of diffusion constants [3–5].
Common for these simulations and experimental techniques is that
the time-steps in the generated particle trajectories are equidis-
tant.

Obtaining theMSDcurve as a function of time is straightforward
from trajectories with equidistant time-steps. The position of
each particle is registered at each time-frame and the squared
displacement for each particle is calculated and registered for all
possible time differences. The resulting squared displacements are
averaged for each time difference and all diffusing particles to yield
the MSD data [6]. Estimating the errors can be done using the
block-average technique of Flyvbjerg and Petersen [7] applied to
each bin in the MSD data, or, as in the context of single particle
tracking experiments, by using the analytical expressions for the
error estimates derived by Qian et al. [3].

Kinetic Monte Carlo (KMC) simulations is a powerful tool to in-
vestigate slow processes in atomic systems, such as rare diffusion
events, that cannot easily be studied with conventional MD tech-
niques. The time-steps inmost versions of KMC are, however, non-
equidistant [8], making the standard techniques for calculating
diffusion farmore elaborate to apply. Several diffusion studieswith
KMC that calculate MSD curves exist in the literature (see e.g.
[9–12]). However it is challenging to find work where MSD curves
are presented with error estimates together with a detailed de-
scription of the procedure used for obtaining them. Unless proper
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error estimates are available, subsequent extraction of diffusion
constants from the MSD data will of course suffer the same lack of
error estimates. The procedure of placing the trajectory fromaKMC
simulation on an equidistant time-grid, calculating the MSD curve
from the equidistant trajectory, and estimate the errors for each
MSD bin using a block-averages [7] or a jackknife [13] approach
is appropriate, but computationally somewhat demanding and in
practice rarely, if ever, used.

Wewill here describe amuch simpler procedure for calculating
the MSD curve with error estimates from non-equidistant time-
step KMC simulations. Themethod we propose calculates theMSD
as an equidistant histogram directly from the non-equidistant
time step KMC simulation trajectory. We have then re-worked the
expressions from Qian et al. [3] for the error estimates of MSD
data for single particle tracking experiments, to be applicable to
the MSD histogram from KMC. Using the block average algorithm
of Flyvbjerg and Petersen [7] applied to each bin in the MSD data
as a reference, we show that our method for estimating the errors
is highly reliable, to a fraction of the computational cost of the
block average approach. Our method gives the correct statistical
error when the MSD curve describes pure Brownian motion and
can otherwise be used as an upper bound for the true error.
Our method has furthermore been implemented as an on-the-
fly analysis option in the publicly available KMCLib program [14].
With our simple method readily available it should be straight
forward for anyone presenting MSD curves from KMC simulations
to include proper error estimates.

2. Algorithm

We propose the following method for calculating the MSD
curve as an equidistant histogram from a non-equidistant time-
step KMC simulation. For each step in the simulation the time
and particle position for each particle of interest is recorded. The
difference in simulation time between the current step and the
N previous steps in the simulation are calculated, along with
the corresponding squared differences in particle positions. The
N previous steps will be referred to as the history window. The
calculated time differences are binned on a fine grid in t , and the
corresponding squared differences in particle positions are added
to the corresponding bins in a histogram D(t). The number of
squared displacements added to each bin are recorded in a bin-
count histogram H(t), and the MSD curve ρ(t) is calculated for
each bin i as

ρi = Di/Hi (1)

with the corresponding time values

ti = iτ + τ/2 (2)

where τ is the bin size. Note that it does notmatter if this procedure
is carried out over a stored trajectory or if it performed on-the-
fly during the simulation. The rest of this paper will be concerned
with determining the error estimates and reliability of the MSD
data ρ(t). We will determine a cutoff tc , that depends on the
size of the history window N and the total rate in the simulated
system. Above this cutoff the collected MSD data cannot be used.
We will furthermore, based on the work for equidistant time-step
single particle tracking by Qian et al. [3], derive an expression
for the standard deviation of ρ(t) from non-equidistant time-step
KMC simulations. We will finally demonstrate with examples that
our proposed algorithm for determining the cutoff and standard
deviation can be used also for simulations of an arbitrary number
of moving particles and elementary process rate constants. In the
case of non-Brownian motion the obtained error estimates can be
used as an upper limit of the true statistical error, while the error
is correctly estimated for pure Brownian motion.

2.1. Analytical expression for the bin-count histogram

It is well known from probability theory that the distribution
of the sum of n random independent variables with the same
distribution f (t) is given by the n-fold convolution f ∗n(t) [15].With
the exponentially decreasing distribution

f (t) = a exp(−bt) (3)

and the normalization condition
∞

0
f ∗n(t)dt =


∞

0
f (t)dt (4)

and by defining f ∗0(t) = f (t) we have

f ∗n(t) =
bntn

n!
a exp(−bt) (5)

for KMC a simulation of one moving particle with the total rate-
constant b kept fixed during the simulation the distribution of con-
secutive time-steps are given by (5), with n = 0 for the distribution
of adjacent time-steps, n = 1 for the distribution of pairs of adja-
cent time-steps, etc. The constant a is related to the length of the
simulation. WithM steps in the simulation a = b(M − 1).

In the above described algorithm, the analytical equivalent
H(t) of the MSD bin-count histogram H(t) is, using a history
window of size (N + 1), given by the sum

HN(t) =

N
n=0

f ∗n(t) = a exp(−bt)
N

n=0

bntn

n!
(6)

where we recognize the well known series

lim
N→∞

N
n=0

bntn

n!
= exp(bt) (7)

and write for the asymptotic expression when the size of the
history window goes to infinity

lim
N→∞

HN(t) = a for all t. (8)

2.2. Truncation and simulation start-up effects

The limit expression (8) holds for a history window and
simulation time approaching infinity. We will now examine what
to expect when the sum in (6) is truncated. This is important since
the simulations are always finite and the history window used is
typically much smaller than the length of the simulation.

Fig. 1(a) shows f ∗n(t) and HN(t) for n = 0, 1, 2, . . . , 15 and
N = 15,with a = 20 and b = 30.Weknow fromprobability theory
that the distribution of the form of (5) can be approximated with a
Gaussian for large values of n, centered at larger t for larger n. The
bin-count histogramHN(t)will thus stay constant according to (8)
up to the point where f ∗(N+1)(t) should have started to contribute
significantly and we see a rapid drop to zero in HN(t). A cutoff
tc defined as the point where the last contributing f ∗n(x) curve
reaches 1% of its maximum value is indicated with a blue vertical
line in Fig. 1 at tc = 0.21. A MSD curve sampled according to H(t)
will above the tc cutoff suffer from incorrect sampling since there
will be important contributions missing from higher successive
convolutions, while below tc the collected MSD data can safely be
used.

Fig. 1(b) shows the corresponding curves from a KMC simula-
tions of one particle on a 1D lattice. The simulation was run for
106 elementary steps and the total rate was at each time b = 30.
f ∗n(t) and HN(t) have here been scaled down a factor (1/3000)
to normalize against the analytical expressions in Fig. 1(a). The
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