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a b s t r a c t

Microcanonical thermostatistics analysis has become an important tool to reveal essential aspects
of phase transitions in complex systems. An efficient way to estimate the microcanonical inverse
temperature β(E) and the microcanonical entropy S(E) is achieved with the statistical temperature
weighted histogram analysis method (ST-WHAM). The strength of this method lies on its flexibility, as
it can be used to analyse data produced by algorithms with generalised sampling weights. However, for
any sampling weight, ST-WHAM requires the calculation of derivatives of energy histogramsH(E), which
leads to non-trivial and tedious binning tasks for models with continuous energy spectrum such as those
for biomolecular and colloidal systems. Here, we discuss two alternative methods that avoid the need
for such energy binning to obtain continuous estimates for H(E) in order to evaluate β(E) by using ST-
WHAM: (i) a series expansion to estimate probability densities from the empirical cumulative distribution
function (CDF), and (ii) a Bayesian approach tomodel this CDF. Comparisonwith a simple linear regression
method is also carried out. The performance of these approaches is evaluated considering coarse-grained
protein models for folding and peptide aggregation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fundamental aspects of phase transitions in complex systems
can be revealed by the analysis of its microcanonical thermostatis-
tics [1,2], which is characterised by thewell known entropy S(E) =

kB lnΩ(E), where Ω(E) denotes the density of states of a sys-
tem with energy E. In particular, the analysis of inflection points
of the microcanonical inverse temperature β(E) = dS(E)/dE
plays an important role in the identification of stable, unstable and
metastable regions in the phase diagram [3–5], providing alterna-
tive insights to the usual canonical analysis. Also, free-energy pro-
files can be obtained from the caloric curves β vs. E, from where
one can easily evaluate the values of barrier heights and latent
heats. In thisway, themicrocanonical thermostatistics analysis has
been incorporated inmany studies in the literature, e.g.Refs. [6–12]
to name a few.

Nevertheless, any analysis must rely on data obtained from
efficient exploration of the configurational space. It is well known

∗ Corresponding author at: School of Chemistry, University of Leeds, LS2 9JT,
Leeds, UK.

E-mail addresses: alves@ffclrp.usp.br (N.A. Alves), lucas.morero@usp.br
(L.D. Morero), lerizzi@usp.br (L.G. Rizzi).

that numerical simulations performed with Monte Carlo (MC)
and molecular dynamics (MD) methods pose limitations to the
achievement of reliable data sampling [13]. Such limitations are
related to the critical slowing down [14], which is observed in
studies of continuous phase transitions, and to the entrapment
in local minima, in the case of systems with rugged energy
landscapes. In both cases, the configurational space is poorly
explored in a reasonable computational simulation time, which
may produce biased physical averages. To overcome the trapping
problem, it has been suggested that configurations must be
sampled using algorithms based on generalised ensembles, where
the updates are performedwith non-Boltzmann statistical weights
ω(E). For instance, the multicanonical algorithm (MUCA) [15,16],
the extended Gaussian ensemble (EGE) [17–19], Tsallis statistical
weight [20,21], and replica exchange method (REM) [22] either
use a series of Boltzmann weights or any convenient generalised
sampling weight [23].

MUCA simulations sample configurations with aweightωmu(E)
in such a way that the energy distribution is uniform, Hmu(E) ∝

Ω(E) ωmu(E) = constant . Thus, a precise determination of ωmu(E)
is equivalent to obtain an estimate for the density of states
Ω(E), i.e. ωmu(E) ∝ 1/Ω(E). The weights ωmu(E) = exp[−b(E)E
+ a(E)] follows from the parameterisation of the entropy
S(E) = b(E)E − a(E), where a(E)and b(E) are the so-called
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multicanonical parameters. The iterative procedure to obtain the
MUCA parameters is described in detail in Refs. [15,16], and can be
read as,

an(Em−1) = an(Em) + [bn(Em−1) − bn(Em)]Em, (1)

bn(Em) = bn−1(Em) + [lnHn−1
mu (Em+1) − lnHn−1

mu (Em)]/ε, (2)

where n stands for the nth multicanonical simulation. The recur-
sion steps require the discretisation of the energy for continuous
energy models. Therefore, it is convenient to define Em = E0 +

mε, where ε is the binsize, m is an integer, and E0 is a constant
that defines a reference energy. All the energies E in the interval
[Em, Em+1[ contribute to the histogram Hmu(Em).

Methods to improve sampling based on simulations at different
temperatures have been proposed to either be conducted in par-
allel (REM) or as a random walk between different temperatures.
In REM, Nrep non-interacting replicas of the system are simulta-
neously simulated by the usual MC or MD algorithms, and from
time to time, pairs of replicas at neighbouring temperatures are
exchanged with a transition probability. From the data produced
by simulations performed at a single temperature T1 or at a set of
temperatures Tα , withα = 1, 2, . . . ,Nrep, it is necessary to employ
a reweighing scheme to evaluate physical averages at a given tem-
perature T . Reweighting techniques [24–26] use data from either a
single histogram or multiple histograms obtained from MC or MD
simulations.

Recently, a simple method called statistical weighted his-
togram analysis method (ST-WHAM) [27] has been proposed as
an iteration-free procedure to obtain an estimate for the micro-
canonical inverse temperature. In this method the usual WHAM
equations [24,25] are converted into a weighted average of the in-
dividual densities of states obtained from simulations carried out
with different sampling weights ω(E). From energy histograms
produced by multiple simulations, ST-WHAM yields a statistical
temperature T̃ (E) = 1/β̃(E), which is an estimate of the inverse
microcanonical temperature β(E) = dS(E)/dE. Interestingly,
there is a numerical procedure based on the multicanonical recur-
sion relations (1) and (2), which is called ST-WHAM-MUCA [28],
that can be used to replace the direct integration in order to
evaluate the entropy S(E). Although both ST-WHAM and ST-
WHAM-MUCA have the advantage of a posteriori discretisation of
energies, their naive implementations may lead to biased evalua-
tions of physical quantities for continuous energy models just like
all the aforementioned algorithms.

As described in Section 2, the estimate β̃(E) for inverse
microcanonical temperature β(E) depends on the derivatives of
the energy histograms H(E) (see Eq. (4)). Here, we analyse how
the estimates β̃(E) are energy binning dependent and, in Section 3,
we present two alternative approaches that avoid the need for
energy binning to evaluate the microcanonical caloric curve for
continuous energy models: (i) a proposal by Berg and Harris [29],
which involves an empirical cumulative distribution (CDF) and
uses discrete Fourier series; and (ii) a Bayesian approach [30]
to model this CDF with the assumption that the thermodynamic
phase transitions are well described by the coexistence of two
phases. A comparative analysis between these approaches is made
in order to characterise β(E) for two systems that undergo first-
order-like phase transitions: the folding transition of a coarse-
grained proteinmodel for Ubiquitin and the aggregation transition
of two heteropolymers that follows a Fibonacci sequence. These
examples allow us to describe the statistical and systematic errors
involved in the numerical calculations ofH(E) and β̃(E), which are
presented in Section 4. Conclusions on this comparative analysis
are presented in Section 5.

2. Statistical temperature weighted histogrammethod

The ST-WHAM [27] yields a direct estimate of the inverse
microcanonical temperature β(E) = d lnΩ(E)/dE by considering
the statistical inverse temperature

β̃(E) =


α

f ∗

α (βH
α + βω

α ), (3)

where f ∗
α = Hα/


γ Hγ , βH

α = d lnHα/dE, and βω
α = −d lnωα/dE.

It is preferable to write Eq. (3) as

β̃(E) =
1

γ

Hγ (E)


α

Hα(E)


d lnHα(E)

dE
−

d lnωα(E)

dE


. (4)

Note that βω
α = 1/Tα for simulations with the canonical weight.

With the set of estimates β̃(Em), MUCA recurrence relations (1) and
(2) can be applied to obtain estimates S̃(Em) for themicrocanonical
entropy S(Em),

S̃(Em) = β̃(Em)Em − a(Em). (5)

This ST-WHAM-MUCA algorithm is quite simple if one has β̃(Em).

3. Numerical evaluation of derivatives

3.1. Linear regression

We can numerically evaluate the derivatives in Eq. (4) in a naive
way,where the derivatives d lnH(E)/dE at energies Em follow from
a linear regression around this point. For instance, we use a linear
regression with k = 15 points; selecting k points means that the
derivative at Em is calculated with the values of H(Eℓ), where ℓ =

m−(k−1)/2,m+1−(k−1)/2, . . . ,m, . . . ,m+(k−1)/2.We chose
a value for k according to the energy binsize ε. Consequently, we
calculate the derivatives in the energy range1E = (k−1)ε. In this
method, it is more convenient to directly calculate the derivative
of lnH(Em) than the derivative of H(Em). We calculate the linear
regression with a subroutine easily adapted from the linear fit
subroutine in [31].

3.2. Cumulative distribution method

Another approach can be devised by considering an algorithm
based on the cumulative distribution function (CDF) [29]. The
advantage of such approach is that it avoids histogramming when
describing probability densities P(E), dismissing the need for any
ad hoc energy discretisation. The method defines an estimator
F̃(E) for the CDF F(E), where the function F̃(E) is an empirical
cumulative distribution function (ECDF) for the probability density
P(E). The algorithm sorts the energy time series of length NDAT
in an ascending order (E1 < E2 < · · · < ENDAT), so any outliers
can be eliminated by constructing a restricted ECDF F̃ab(E) in the
range between two meaningful points a and b (in general one
takes a = E1 and b = ENDAT). The basic idea is to propose an
approximating function F0(E) to describe F̃ab(E), from where the
difference function is defined,

R(E) = F̃ab(E) − F0(E). (6)

This function can be expanded in Fourier series,

R(E) =

MMAX
m=1

d(m) sin

mπ(E − a)

b − a


, (7)

which gives the Fourier coefficients [29],

d(m) =


2

b − a

 b

a
R(E) sin


mπ(E − a)

b − a


dE. (8)
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