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a b s t r a c t 

In this paper, a general bi-Helmholtz nonlocal strain-gradient elasticity model is devel- 

oped for wave dispersion analysis of porous double-nanobeam systems in thermal envi- 

ronments. The present model incorporates three scale coefficients to examine wave dis- 

persion relations much accurately. Porosity-dependent material properties of inhomoge- 

neous nanobeams are defined via a modified power-law function. Based on Hamilton’s 

principle, the governing equations of double-nanobeam system on elastic substrate are ob- 

tained. Solving analytically these equations gives wave frequencies and phase velocities 

as a function of wave number. It is demonstrated that phase velocities of a nanoporous 

double-nanobeam system rely on the porosities, thermal loading, material gradation, non- 

local parameters, strain gradient parameter, interlayer springs, elastic substrate and wave 

number. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recently, introducing new continuum theories for modeling of nanoscale structures has gained intense interest in order 

to describe the small size effects of such structures wherein the interactions of nonadjacent atoms are not ignorable. Most 

cited continuum mechanics for modeling of nanostructures is nonlocal theory introduced by Eringen (1983 ) in which long 

range forces between atoms are involved. In fact, this theory assumes that the stress of a given point in continuous body is 

associated with the strains of all points not only those near that given point. Due to possessing a material scale parameter, 

nonlocal elasticity theory has been broadly applied in analysis of nanoscale beams and plates ( Barati, Zenkour, & Shahverdi, 

2016 ; Ebrahimi & Barati, 2017a, 2016a, Fernández-Sáez, Zaera, Loya, & Reddy, 2016 ; Nejad, Hadi, & Rastgoo, 2016 ; Pavlovi ́c, 

Karli ̌ci ́c, Pavlovi ́c, Janevski, & Ćiri ́c, 2016 ; Rahmani & Pedram, 2014 ; Sarkar & Reddy, 2016 ; Shafiei, Kazemi, Safi, & Ghadiri 

et al., 2016 ; SoltanRezaee & Afrashi, 2016 ; Tuna & Kirca, 2016 ; Zenkour & Abouelregal, 2016 ). 

However, several researchers have been discussed on the limitations and inabilities of nonlocal elasticity theory. 

Romano, Barretta, Diaco, and de Sciarra (2017 ) examined the efficiency of differential form of nonlocal elastic law is pre- 

dicting mechanical behaviors of nanobeams, especially those with clamped-free boundary conditions. They discussed on 

the inability of nonlocal differential elasticity in analysis of nano-cantilevers and proposed a solution for such problems. 

Koutsoumaris, Vogiatzis, Theodorou, and Tsamasphyros (2015 ) examined the application of bi-Helmholtz nonlocal elasticity 

model with two nonlocal parameters in vibration analysis of carbon nanotubes. By comparing obtained results with those of 

molecular dynamic (MD) simulation, they concluded that present bi-Helmholtz nonlocal elasticity in more appropriate than 

one parameter nonlocal elasticity in predicting mechanical behavior of nanostructures. Shaat and Abdelkefi (2017 ) have been 

proved that wave propagation curves of nanobeams cannot be verified with those of experimental data with only one nonlo- 
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cal parameter. Therefore, they used a general nonlocal elasticity theory containing two nonlocal scale parameters to predict 

wave characteristics of nanobeams much accurately. 

In the main body of literature, there is a significant confusion among researchers about the scale parameters involved in 

nonlocal elasticity theory and strain gradient theory. Investigations based of nonlocal elasticity theory have been reported 

a stiffness-softening mechanism in contrast with stiffness-hardening mechanism observed in conventional strain gradient 

theory. Based on a nonlocal-strain gradient elasticity, Lim, Zhang, and Reddy (2015 ) proved that wave characteristics of 

nanobeams could not be matched with those of experiments only using nonlocal elasticity or strain gradient theory. Most 

recently, few investigations have been carried out to examine combined effects of nonlocal and strain gradient elasticity in 

wave propagation, vibration and buckling analysis of nanostructures ( Ebrahimi & Barati, 2016b, 2017b, c, Ebrahimi, Barati, 

Dabbagh, 2016 , Ebrahimi, Barati, & Haghi, 2016, Li & Hu, 2015 ; Li, Hu, & Ling, 2015 ; Li, Li, & Hu, 2016 ). 

The double-nanobeam system is constructed from two parallel nanoscale beams continuously connected via coupling 

medium. Such nanobeams have great applications in nano-electro-mechanical systems including nanoscale sensors and 

switches ( Arani, Abdollahian, & Kolahchi, 2015 ). Therefore, understanding wave propagation and vibration behavior of such 

structures is of great importance in the research community ( Arani, Kolahchi, & Mortazavi, 2014 ; Murmu & Adhikari, 2010 ; 

Murmu, McCarthy, & Adhikari, 2012 ; Ş im ̧s ek, 2011 ). Moreover, porosities create inside the material during the construction 

of structures even at nanoscale ( Zhang, Qian, Zhu, & Tang, 2014 ). Investigation of porosity effect in analysis of nanostructures 

is a novel topic which is reported by only a few researchers. Shaat and Abdelkefi (2016 ) examined buckling characteristics 

of nano-crystalline porous nanobeams via an analytical approach. Mechab, Mechab, Benaissa, Ameri, and Serier et al. (2016 ) 

and Mechab, Mechab, Benaissa, Serier, and Bouiadjra (2016 ) examined free vibrational behavior of FGM nanoscale plates 

with porosities according to a higher order refined plate model. They concluded that volume fraction of porosities inside 

the material significantly changes the frequencies. 

In this study, a double-nanobeam system is modeled via a generalized bi-Helmholtz nonlocal-strain gradient theory to 

examine the wave characteristics at nanoscale. Three scale parameters called lower order, higher order nonlocal parameters 

as well as a strain gradient parameter are considered in the model to appropriately capture the small size effects. Graded 

material properties of nanobeams are porosity-dependent based on a modified rule of mixture. Governing equations of em- 

bedded double-nanobeam system derived from Hamilton’s principle are analytically solved to obtain wave characteristics. A 

parametric study is performed to examine the influences of interlayer stiffness, nonlocal parameters, strain gradient param- 

eters, porosities and material composition on wave characteristics of such double-nanobeam systems. 

2. Theory and formulation 

2.1. Porosity-dependent functionally graded materials 

The volume fractions of ceramic and metal phases based on the P-FGM model are considered as ( Wattanasakulpong & 

Ungbhakorn, 2014 ; Yahia, Atmane, Houari, & Tounsi, 2015 ): 
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in which p and ξ are power-law index and porosity volume fraction, respectively. Finally, the effective Young’s modulus E(z) , 

density ρ( z ) and thermal expansion coefficient α( z )of the nonlocal P-FGM beam can be expressed in the following form 

( Wattanasakulpong & Ungbhakorn, 2014 ; Yahia et al., 2015 ): 
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Based on the model defined in Eq. (2), upper and lower sides of nanobeams are pure ceramic and pure metal respectively 

and their material properties are listed in Table 1 . Also, geometry of functionally graded double-nanobeam system is shown 

in Fig. 1 . 

2.2. Kinematic relations 

The displacement field at any point of the nanobeam according to Euler–Bernoulli beam theory is defined by: 

u x ( x, z, t ) = u ( x, t ) − z 
∂w (x, t) 

∂x 
(3a) 

u z (x, z, t) = w (x, t) (3b) 
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