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a b s t r a c t 

In this paper the effective thermal conductivities of multiscale heterogeneous media with 

ordered microstructures are determined based on the reiterated homogenization method 

and analytical formulae available in the literature. While conventional homogenization 

has been extensively applied to thermal problems in two-scale media, reiterated homog- 

enization appears to have been used, to date, mostly to formulate problems in heteroge- 

neous media with more than two scales, rather than to calculate effective properties. Here, 

specifically, analytical formulae for the effective conductivities of the 2-D square array of 

circular cylinders and the 3-D simple cubic array of spheres are used, in conjunction with 

the appropriate reiterated homogenization expressions, to calculate the effective conduc- 

tivities of the corresponding three-scale arrays of circular cylinders and spheres. The case 

with a perfect thermal contact at the interface is considered. The results for the effective 

thermal conductivity gain of each three-scale array relative to the two-scale counterpart 

are given in terms of the problem volume fractions and phase contrast. For each three- 

scale array the optimal volume fraction at the smallest structural scale that maximizes the 

conductivity gain is determined, as well as the optimal global volume fraction. In special, 

gains in excess of 9% may be achieved. The present approach thus allows for the system- 

atic evaluation of conductivity gains solely on the basis of Fourier heat conduction and 

microstructural information. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The determination of the effective properties of heterogeneous media have challenged scientists, mathematicians, and 

engineers for quite a long time. One possible approach to the problem is the now well-established method of homogeniza- 

tion, which is an up-scaling procedure that unravels the macroscopic behavior of a continuous medium from a consideration 

of the first principles applied to its smallest scales. For two-scale media, conventional homogenization of the linear elliptic 

partial differential equation is presented in Bakhvalov and Panasenko (1989) , Bensoussan, Lions, and Papanicolaou (1978) , 
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Nomenclature 

d smallest length scale of medium (m) 

F G analytical formula available for array geometry G 

k thermal conductivity (W/m · K) 

k eff effective thermal conductivity (W/m · K) 

k ∗
gain 

effective thermal conductivity gain 

k 1 intermediate effective thermal conductivity (W/m · K) 
ˆ k global effective thermal conductivity (W/m · K) 

L largest length scale of medium (m) 

V , | V | domain, volume of domain (m 

3 ) 

x slow spatial coordinate (m) 

X generic cell, cell domain 

y fast ( Y -level) spatial coordinate (m) 

Y generic cell, cell domain, or dimension at the structural level δ
z fastest ( Z -level) spatial coordinate (m) 

Z generic cell, cell domain, or dimension at the structural level d 

Greek symbols 

α ratio of phase conductivities or phase contrast 

�Y union of interfaces in the Y -level cells 

�Z union of interfaces in the Z -level cells 

δ intermediate length scale of medium (m) 

ε small parameter, ratio of two successive length scales 

φ volume fraction 

� multiscale medium domain 

∂� external boundary of �

Subscripts 

eff effective 

m continuous or matrix component 

opt optimal 

p dispersed, inclusion or particle component 

Superscripts 
∗ nondimensional quantity 

CB simple cubic array 

CH two-scale medium tractable by conventional homogenization 

RH three-scale medium tractable by reiterated homogenization 

SQ square array 

Y refers to the Y -cell or Y -domain at scale δ
Z refers to the Z -cell or Z -domain at scale d 

Cioranescu and Donato (1999) and Panasenko (2008) . Heat transfer engineering applications of conventional homogeniza- 

tion, including numerical computations of the effective thermal conductivity, are found in Auriault (1983) , Auriault and 

Ene (1994) , Kami ́nski (2003) , Matine, Boyard, Cartraud, Legrain, and Jarny (2013) , Matt and Cruz (2008) and Rocha and 

Cruz (2001) . For media with more than two spatial scales, the method of reiterated homogenization has been developed in 

Bensoussan et al. (1978) , and used to formulate the linear elliptic boundary value problem ( Allaire & Briane, 1996; Bensous- 

san et al., 1978 ), including heat conduction under perfect contact conditions at the interface ( Rodríguez, Cruz, & Castillero, 

2016 ). However, few effective property calculations, if any, have been performed to date based on the reiterated method. 

Many current engineering materials or media exhibit heterogeneous structures at several different microscopic lev- 

els ( Markov, Mousatov, Kazatchenko, & Markova, 2014; Telega, Gałka, & Tokarzewski, 1999 ), notably nanomaterials 

( Angayarkanni & Philip, 2015; Evans et al., 2008; Greco, 2014; Jin & Lee, 2013; Mortazavi, Benzerara, Meyer, Bardon, & 

Ahzi, 2013; Shin, Yang, Chang, Yu, & Cho, 2013; Vatani, Woodfield, & Dao, 2015; Wang, Zheng, Gao, & Chen, 2012 ). While 

it is expected that the macroscopic conductive behavior of such materials will be affected by these structures, few rigor- 

ous first-principle analytical or computational treatments are found addressing this issue. In the present paper, analytical 

calculations are performed of the effective thermal conductivity gain of multiscale ordered heterogeneous media based on 

reiterated homogenization theory. 

Conflicting experimental reports on measurements of the effective thermal conductivity of colloidal nanofluids 

( Angayarkanni & Philip, 2015; Wang et al., 2012 ) point to the importance of complementary theoretical modeling approaches. 
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