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a b s t r a c t 

The complete series solution has been obtained for the potential field of an array of ellip- 

soidal inhomogeneities regarded as a multi particle model of composite. By combining the 

superposition principle, the perturbation field expansion in terms of ellipsoidal harmonics 

and the re-expansion formulas for them, the model boundary value problem is reduced 

to a set of linear algebraic equations. The obtained solution has been implemented in the 

modified Maxwell and Ralyeigh homogenization schemes for effective conductivity of el- 

lipsoidal particle composite with an adequate account for the interaction effects. The re- 

sults of numerical study are provided which illustrate the convergence rate of solution and 

accuracy of the developed method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

An ellipsoid is probably the most popular in the micromechanics model shape of inhomogeneity for it provides con- 

sidering, within the unified formalism, a wide range of heterogeneous solids including porous and composite media with 

round/spherical inhomogeneities, short fibers, platelets, elliptical cracks, etc. The Eshelby’s solution ( Eshelby, 1959 ) for a 

single ellipsoidal inclusion in an infinite medium constitutes the theoretical background of many micromechanical theories 

and hitherto is widely used. The Eshelby model based theories provide a satisfactory prediction of the effective properties 

of composites with low-to-moderate volume content of inhomogeneities where interactions between the inhomogeneities 

can be safely neglected. On the contrary, behavior of high-filled composite is determined, to a large extent, by interaction 

of adjacent inhomogeneities producing high gradients of local fields and affecting quite significantly the effective properties. 

The predictive models for these composites, in order to account for the interaction of inhomogeneities, should employ the 

multi particle structure models and rigorous methods of their analysis. 

Several multi particle models of composites with inhomogeneities of spherical and spheroidal shape are available in 

literature. We mention only a few papers where the two-particle ( Chiew & Glandt, 1987; Jeffrey, 1973; Lu & Kim, 1990 ) and 

periodic ( Cheng & Torquato, 1997; Kushch, 1997; McPhedran & McKenzie, 1978; Rayleigh, 1892; Sangani & Acrivos, 1983 ) 

models of particulate composite were studied. At the same time, interaction of ellipsoidal inhomogeneities as well as its 

effect on the effective properties of composite is hitherto hardly studied. 

The paper by Moskovidis and Mura (1975) is probably the first one where an interation of two ellipsoidal in- 

homogeneities was addressed. An approximate solution obtained there is based on the equivalent inclusion method 
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( Eshelby, 1959 ) and hence is valid only for far-separated inhomogeneities. A few subsequent publications in this direction, 

they are Chen and Yang (1995) in conductivity and Kirilyuk (2001) , Shodja, Rad, and Soheilifard (2003) and Bedayat and 

Taleghani (2015) in elasticity context, do not show any significant progress in comparison with Moskovidis and Mura (1975) . 

To the best author’s knowledge, all the available homogenization schemes for composites with ellipsoidal inhomogeneities 

employ the single-particle structure model. In the conductivity context, they are Fricke (1924) , Benveniste and Miloh (1986) , 

Miloh and Benveniste (1999) and Shafiro and Kachanov (20 0 0) , to mention a few. 

In the present work, a complete full field solution for an unbounded solid containing an array of ellipsoidal inhomo- 

geneities has been obtained by the Multipole Expansion Method ( Kushch, 2013 ). By combining (a) superposition principle, 

(b) multipole expansion of perturbation fields of inhomogeneities in terms of ellipsoidal harmonics and (c) translation type 

re-expansion formulas for these harmonics, the boundary value problem for heterogeneous solid is reduced to an infinite 

algebraic system with respect to the multipole moments of ellipsoidal inhomogeneities. The obtained solutions for a finite 

cluster and an infinite periodic array of inhomogeneities are implemented in two classical homogenization schemes origi- 

nated by Maxwell (1873) and Rayleigh (1892) . 

2. Potential field of interacting ellipsoids 

2.1. Problem statement 

We consider the conductivity problem for an unbounded solid, or matrix, containing a certain number of ellipsoidal 

inhomogeneities and regarded as a multi particle, or cluster, model of particulate composite. Here, the term “conductivity”

applies to all transfer (heat, charge, mass, etc.) phenomena whose potential obeys Laplace equation. To be specific, we use 

terminology of the thermal conductivity theory. Both the matrix and inhomogeneities are made of isotropic materials. The 

governing equation is ∇ · q = 0 , where q = −k ∇T is the heat flux vector, k is the thermal conductivity, T and ∇T are the 

temperature and its gradient. In the case of constant k , ∇ 

2 T = 0 . 

To keep our presentation clear, we minimize the number of the model parameters. To this end, we assume that all the in- 

homogeneities are of the same shape, size, properties and orientation. All the matrix- and inhomogeneity-related quantities 

are indexed by “0” and “1”, respectively: T = T (0) and k = k 0 in the matrix, T = T (1) and k = k 1 in the inhomogeneities. The 

thermal load is defined by the far/mean temperature gradient G = G j i j where i j are the unit base vectors of the Cartesian 

coordinate system. The corresponding far/mean temperature field is T far = G · x . 

The perfect thermal contact between the matrix and inhomogeneities is assumed which means the temperature and 

normal heat flux continuity at the interface S . The relevant boundary conditions are 

[ [ T ] ] S = 0 ; [ [ q n ] ] S = 0 ; (1) 

where q n = −k ∇T · n = − k ∂T 
∂n 

is the normal flux and [[ f ]] S is a jump of quantity f across the interface S with outer normal 

vector n . Our aim is to obtain the accurate full field solution to the boundary value problem and apply it for evaluation of 

the effective conductivity tensor K 

∗ = k ∗
i j 

i i i j of the ellipsoidal particle composite. 

2.2. Single ellipsoidal inhomogeneity 

Consider first an unbounded domain containing a single ellipsoidal inhomogeneity with the semiaxes a 1 > a 2 > a 3 
oriented along the corresponding axes of Cartesian coordinate system Ox 1 x 2 x 3 . For the ellipsoidal coordinates and other 

notations, see Appendix A . Noteworthy, in the ellipsoid-related notations we follow the recent monograph by Dassios (2012) . 

The temperature field in and outside the inhomogeneity is caused by the far temperature field T far : T 
(0) → T far when ‖ r ‖ → 

∞ . To complete the problem formulation, we require that T (1) (0) = 0 . We are looking for the temperature fields inside and 

outside the inhomogeneity. 

The regular temperature field inside the inhomogeneity is given by a series of interior solid harmonics E 

m 

n defined by 

Eq. (A.1) of Appendix A : 

T (1) ( r ) = 

∞ ∑ 

n =0 

2 n +1 ∑ 

m =1 

D nm 

E 

m 

n ( r ) . (2) 

Here, D nm 

are the inhomogeneity-related series expansion coefficients. The temperature field outside the inhomogeneity is 

written as a sum of the far field T far and perturbation field T per ( → 0 for ‖ r ‖ → ∞ ) caused by the inhomogeneity. The series 

expansion of T far is analogous to Eq. (2) and involves only the interior harmonics E 

m 

1 
: 

T far = G · r = 

3 ∑ 

m =1 

G m 

h m 

h 1 h 2 h 3 

E 

m 

1 ( r ) = 

3 ∑ 

m =1 ̃

 G m 

E 

m 

1 ( r ) , (3) 

where ˜ G m 

= G m 

/H m 

and H m 

= ( h 1 h 2 h 3 ) /h m 

. 
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