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Starting from the symmetry breaking stretches of the hexagonal and the rhombohe- 

dral graphite viewed as 2-lattices, we study martensite/martensite interfaces (twins) and 

martensite/austenite interfaces (habit lines) for a monolayer-thick free-standing graphene 

sheet. We do that by adopting the theoretical framework of Bhattacharya and James (1999). 

The outcome of our analysis consists of inequalities that should be satisfied by the com- 

ponents of the symmetry breaking stretches in order the twinning equation to have a so- 

lution. We also evaluate the vector describing the twin interface and the habit line. This is 

done for some specified film orientation and for the first breaking of symmetry for hexag- 

onal and rhombohedral graphite which leads to orthorombic and face-diagonal monoclinic 

configurations, respectively. In 2 dimensions, this transformation corresponds to the hexag- 

onal to rhombic phase transition for graphene. The second symmetry breaking for both the 

hexagonal and the rhombohedral graphite results to the triclinic configuration and cor- 

responds, in 2 dimensions, to the hexagonal to oblique transformation for graphene. For 

the second symmetry breaking, we only report inequalities that should be satisfied by the 

components of the symmetry breaking stretches in order the twinning equation to have 

a solution, for some specific cases. Constraints necessary for the formation of tunnels and 

tents are also included in our analysis. Connection with what one may expect to see dur- 

ing experiments or when using molecular calculations is done using some representative 

figures. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

A martensitic phase transformation is a first-order, diffusionless solid to solid phase transformation ( Bhattacharya, 2004; 

Pitteri & Zanzotto, 2003 ). Thus, during this transformation the material remains a solid. The characterization first or second 

order pertain to the continuity of the lattice parameters during the change. When the lattice configuration changes abruptly 

at the transition we speak about a first-order phase transition. When the change is continuous near and at the transition we 

speak about a second-order phase transition. During a martensitic phase change there is no change in the relative position 
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of the atoms: the transition is diffusionless. Essentially, there is no rearrangement of atoms and one can obtain one structure 

from a deformation of the other. If there is only one control parameter, e.g. the temperature, the lattice has one structure 

at high temperature and a different one at low temperature. The high temperature phase is called the austenitic phase (or 

the austenite), while the low temperature phase is called the martensitic phase (or the martensite). 

Generalizations of the classical theory of elasticity to take into account martensitic phase changes begin with the theo- 

ries of Ericksen (1970 , 1979) and Parry (1978 , 1976) . These authors provide a means for extending the framework of non- 

linear elasticity to cover cases where symmetry of a crystalline material changes due to loading or changes of temperature. 

For the particular class of martensitic transformations, one should confine himself to weak transformation neighborhoods 

( Pitteri, 1984b ). These are neighborhoods in the space of admissible metrics and limit the symmetry breaking procedure 

according to the scheme: symmetry can only reduce to one of its subgroups. Thus, the martensite should have crystallo- 

graphic symmetry which is a subgroup of the crystallographic symmetry of the austenite. Confinement to weak transforma- 

tion neighborhoods guarantees also the uniqueness of the austenitic phase ( Bhattacharya, 2004 ). An energy that describe 

austenite-martensite changes has mutliple minima. The location of the wells are related to the crystal structure of the 

austenitic and the martesnitic phase. 

A very important class of non-homogeneous energy minimizing deformations is twins in martensite ( Ball & James, 1987, 

1992; James, 1981 ). A twin is built up of two homogeneous portions of the same crystal species oriented with respect to 

one another by a rotation. The homogeneous portions of the material are called variants of the martensite. More complex 

arrangements of the variants of the martensitic phase are called microstructure ( Bhattacharya, 1991, 1992, 2004 ). Some 

examples of microstructure are the wedge-like microstructure as well as the case where twins appear within twins as a 

consequence of loading and/or heating/cooling. From the physical point of view microstructure is a consequence of the 

multiwell structure of the energy. If the applied boundary conditions correspond to the average value of some of the wells, 

then the material prefers to make a mixture of different wells ( Bhattacharya, 2004 ). 

Another very important manifestetion of microstructure is the formation of austenite/martensite interfaces (habit planes). 

These interfaces are not commonly observed in most martensitic materials ( Bhattacharya, 2004 ). Instead one observes an 

interface separating austenite from variants of martensite. A typical example is the austenite/martensite interface in cooper- 

aluminum-nickel ( Bhattacharya, 2004 ). 

The mathematical framework for treating twins in a bulk material is given in the fundamental work of Ball and 

James (1987 , 1992) . These authors lay down a solid mathematical framework where twins need not be known a priori; 

they are the outcome of the theory provided one knows the transformation matrices from the austenite to the martensite. 

This theory has been successfully applied to treat twin and habit plane microstructure for the tetragonal to monoclinc trans- 

formation in zirconia ( Simha, 1997 ), wedge microstructure ( Hane, 1999 ) and more complex microstructure for the cubic to 

tetragonal transition ( Hane & Shield, 1998 ). An excellent book by Bhattacharya (2004) and a review article by James and 

Hane (20 0 0) , collect all necessary material and provide valuable references on the topic. 

The thin film theory of martensite is presented by Bhattacharya and James (1999) . These authors start from three di- 

mensional nonlinear elasticity and derive a theory for single crystal thin films as a Cosserat membrane theory with one 

Cosserat vector field. They also provide the mathematical framework for evaluating twins and habit lines for thin films 

knowing only the symmetry breaking stretches of the bulk material. More specifically, Proposition 5.1 of Bhattacharya and 

James (1999) gives the general methodology for studying twinning on a thin film starting from the symmetry breaking 

stretches of the bulk material. These authors ( Bhattacharya & James, 1999 ) infer that thin films can undergo a richer class 

of deformations compared to their bulk counterparts which makes microstructure formation more possible for thin films 

and conclude that there are many material’s and film’s orientations where the austenite can form an exact interface with a 

single variant of the martensite. 

Since such interfaces can be used as hinges, because they are compatible with a one-parameter family of rotations, 

Bhattacharya and James (1999) examined if they can be arranged in a specified manner. Such a line of thought led them to 

study tent and tunnel formation as energy minimizing deformations which may be used for microactuators and apply this 

theory to some representative materials such as Ni 50 Ti 50 , Ni 2 MnGa, Ni 64 Al 36 . They also provide constraints the components 

of the symmetry breaking stretches of the bulk material should satisfy in order martensite/austenite interfaces to exist 

for the cubic to tetragonal, cubic to orthorombic, and cubic to monoclinic transformations for different film orientations. 

Their theory is used to study tents and tunnels in Ni 2 MnGa, PbTiO 3 and Cu-Zn-Al ( Bhattacharya, DeSimone, Hane, James, & 

Palmstron, 1999 ) and also for the quasiconvexification problem of the two-well and the four-well problem ( Bhattacharya & 

Dolzmann, 20 0 0, 20 01 ). 

The analysis in the present work is guided by the thin film framework of Bhattacharya and James (1999) and aims to 

find conditions for having twins (martensite/martensite interfaces) as well as habit lines (martensite/austenite interfaces) for 

a monolayer-thick free-standing graphene sheet. Since Proposition 5.1 of Bhattacharya and James (1999) uses the symmetry 

breaking stretches of the bulk material to infer whether twinning is possible for the thin film, the starting point of our 

analysis is graphite, which is the bulk material from which graphene can be exfoliated by the micromechanical cleavage 

method or the Scotch tape method ( Novoselov, 2011 ). Graphite has two stackings: hexagonal and rhombohedral graphite. 

As a 2-lattice hexagonal graphite belongs to type 27 of the classification of Fadda and Zanzotto (2001) . For the special ratio 

c/a = 1 . 633 of its lattice parameters the hexagonal 2-lattice gives the well known hexagonal closed pack (h.c.p.) structure 

while for a generic value of the c / a it is usually called a deformed h.c.p. structure ( Fadda & Zanzotto, 2001 ). Rhombohedral 
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