
Original Article

A comparison between different finite elements for elastic and
aero-elastic analyses

Mohamed Mahran a,⇑, Adel ELsabbagh b, Hani Negma

aAerospace Engineering Department, Cairo University, Giza 12613, Egypt
bAsu Sound and Vibration Lab, Design and Production Engineering Department, Ain Shams University, Abbaseya, Cairo 11517, Egypt

g r a p h i c a l a b s t r a c t

a r t i c l e i n f o

Article history:
Received 8 April 2017
Revised 23 June 2017
Accepted 28 June 2017
Available online 1 July 2017

Keywords:
Finite element method
Triangular element
Quadrilateral element
Free vibration analysis
Stress analysis
Aero-elastic analysis

a b s t r a c t

In the present paper, a comparison between five different shell finite elements, including the Linear
Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation
modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape func-
tions and the element equations related to each element were presented through a detailed mathemat-
ical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and
used to derive each element’s strain-displacement matrix in bending. The elements were compared using
carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements
needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable
element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with
deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-
Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node
Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress
analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer
computation time. Additionally, the nine-node quadrilateral element was found to be the best choice
for laminated composite plates analysis.
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Introduction

Numerical methods are usually the first choice for many
researchers and engineers to analyze complicated systems because
of their accessibility, flexibility and ability to solve complex sys-
tems. The Finite Element Method (FEM) as one of the powerful
numerical methods for structural analysis comes at the top of the
list of all numerical methods. As introduced in many Refs. [1–6],
the method is mainly based on dividing the whole structure into
a finite number of elements connected at nodes. The properties of
the whole structure such as mass and stiffness, which are continu-
ous in nature, are discretized over the elements and approximate
solutions are obtained for the governing equations. The elements
equations are assembled together to reach a global system of alge-
braic equations, which can be solved for the unknown solution vari-
ables of the structure. The accuracy of the FEM solution depends on
many factors, such as the interpolation polynomials and subse-
quently the element shape functions, the number of degrees of free-
doms selected for each element, the mesh size, and the type of
element used. The model accuracy is a result of the deep under-
standing of the effect of each factor on the final results.

The selection of the element interpolation functions is a key fac-
tor in the accuracy of the FEM solution. For this reason, intensive
researches have been made to develop new finite elements having
different shapes and interpolation functions. There are numerous
types of elements for different structural problems. In this paper,
the main focus is on two-dimensional shell elements. Finite shell
elements such as triangular elements [7–9], quadrilateral elements
[10,11], higher order elements [12–17], and improved elements
[18] are all tested and approved to achieve an acceptable level of
accuracy. Although a vast number of elements are available in lit-
erature, researchers cannot easily figure out which element is the
most suitable to select for their particular problem. The selection
problem is even more difficult for engineers who are mainly inter-
ested in the application rather than the theoretical background.
Additionally, the detailed mathematical formulation of some thin
shell bending elements, especially the higher order ones, cannot
be easily found in the literature.

Considering aero-elasticity in which the structural model is
coupled to an aerodynamic model adds more complications to
the problem, and makes the choice of the suitable element more
challenging. Aero-elasticity is crucial for structures such as aircraft,
wind turbines, and several other applications in which divergence
and flutter phenomena may occur leading to catastrophic failures

of the structure. Therefore, designers of these structures are con-
strained by the design limits and definitely need accurate FEM
without being computationally expensive.

Therefore, the aim of the present work is to present a detailed
mathematical formulation for different thin shell finite elements
along with a complete comparison between them for specific prob-
lems in structures and aero-elasticity. The results of the selected
elements are compared based on (1) solution accuracy of each ele-
ment, (2) number of elements needed to achieve convergence, and
(3) computational time. The comparison is for free vibration anal-
ysis, stress analysis, aero-elastic analysis, and laminated composite
analysis. Five different elements are selected for the present com-
parison with different nature. These finite elements are

(1) Three-node linear triangular element [1] denoted as LINTRI.
(2) Four-node linear quadrilateral element [1] denoted as

LINQUAD.
(3) Four-node linear quadrilateral element based on deforma-

tion modes (MKQ12 [18]).
(4) Eight-node quadrilateral element denoted as QUAD8NOD.
(5) Nine-node quadrilateral element denoted as QUAD9NOD.

These elements are selected with different nature ranging from
linear to higher order, triangular to quadrilateral, and improved to
regular elements to provide wide range of variety to the present
comparison. All these elements are tested using bench mark prob-
lems from the literature [19,20] for elastic and aero-elastic analy-
ses with analytical results and/or experimental measurements.
The element shape functions are derived using MATHEMATICA
[21] software and then implemented into MATLAB [22] codes to
solve the selected problems.

The finite elements’ formulation

The present finite element model is based on either the classical
plate theory formetallicmaterialsor laminatedplate theory for com-
positematerials. Both arebasedon theKirchhoff assumptionswhich
neglect the transverse shear and transverse normal effects [2].

To formulate a finite shell element there is a standard procedure
that is usually followed.

(1) Start from the weak (integral) form of the governing
equation.

Nomenclature

Symbol
A coefficient matrix for in-plane action
As steady aerodynamic coefficient matrix in structural

coordinates
Asd unsteady aerodynamic coefficient matrix in structural

coordinates
Avlm steady aerodynamic coefficient matrix
B strain-displacement matrix
d displacement in global coordinates
D stress-strain matrix (isotropic material properties ma-

trix)
J Jacobian Matrix for first order derivatives
K stiffness matrix
M mass matrix
N shape function matrix
w structural bending displacement field
W structural bending nodal displacements

x, y, z element local coordinates
d displacement vector in local coordinates
X, Y, Z structural global coordinates
V volume
E elasticity modulus of the wing material
Vinf flow speed
q1 dynamic pressure
r stress
br reference length (half the wing root chord)
JJ Jacobian matrix for second order derivatives
k reduced frequency
t plate wing thickness
1 wing damping ratio
x flutter frequency
e strain vector
n, g reference element coordinates
q air density
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