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Abstract This paper investigates the control of an experimentally validated model of production

of bioethanol. The analysis of the open loop system revealed that the maximum productivity

occurred at a periodic point. A robust control was needed to avoid instabilities that may occur when

disturbances are injected into the process that may drive it toward or through the unstable points. A

nonlinear model predictive controller (NLMPC) was used to control the process. Simulation tests

were carried out using three controlled variables: the ethanol concentration, the productivity and

the inverse of the productivity. In the third configuration, the controller was required to seek the

maximum operating point through the optimization capability built in the NLMPC algorithm. Sim-

ulation tests presented overall satisfactory closed-loop performance for both nominal servo and reg-

ulatory control problems as well as in the presence of modeling errors. The third control

configuration managed to steer the process toward the existing maximum productivity even when

the process operation or its parameters changed. For comparison purposes, a standard PI controller

was also designed for the same control objectives. The PI controller yielded satisfactory perfor-

mance when the ethanol concentration was chosen as the controlled variable. When, on the other

hand, the productivity was chosen as the controlled output, the PI controller did not work properly

and needed to be adjusted using gain scheduling. In all cases, it was observed that the closed-loop

response suffered from slow dynamics, and any attempt to speed up the feedback response via tun-

ing may result in an unstable behavior.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Research on using ethanol as an alternative fuel is gaining
tremendous attention all over the world. One of the promising
routes for ethanol production is the continuous fermentation

of sugars. The microorganism, Zymomonas mobilis, has long
been known to be a promising medium for industrial produc-
tion of ethanol (Astudillo and Alzate, 2011). However, the

continuous culture is known to exhibit undesired sustained
oscillations over a wide range of operating conditions
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(Borzani, 2001; Garhyan et al., 2003; Garhyan and Elnashaie,

2004a,b). This leads to a decrease in ethanol productivity and
less efficient use of available substrate.

Adequate control is one of the best ways to maintain the

process performance. However, the development of an efficient
control for bioreactive systems is not straight forward owing to
a number of reasons. These include the lack of accurate models

describing cell growth and product formation, the non-linear
nature of the model, if available, which makes parameter esti-
mation particularly difficult, the slow process response and the
scarcity of on-line measurements of the component concentra-

tions (Astudillo and Alzate, 2011; Schurgel, 2001; Alford,
2006).

A variety of open loop as well as closed loop control strate-

gies can be found in the literature. Open loop strategies are still
frequently encountered (Gregory and Turner, 1993). The com-
mon difficulty in these techniques, however, is that no compen-

sation is made for modeling mismatch or random disturbances
during the process operation. Classical PID controllers, on the
other hand, can fail to stabilize the process if the tuning
parameters are not carefully selected (Chen and Chang,

1984). Therefore, in recent years, several advanced control
strategies have been proposed. Robust adaptive controllers,
for instance, were designed to track the product trajectory in

a fermenter in which the kinetics are complex and most of
the state variables are difficult to measure (Frahm et al.,
2002; Johnston et al., 2002; Whiffin et al., 2004; Smets et al.,

2002). For most bioprocesses in which there is a deficiency in
reliable on-line sensors, an extended Kalman filter can be used
to estimate unmeasured states and parameters (Frahm et al.,

2002; Johnston et al., 2002; Whiffin et al., 2004; Smets et al.,
2002). Recently, Kawohl et al. (2007) presented a survey of
the application of model based estimation, optimization, and
control methods for bioprocesses. Chung et al. (2006) studied

the implementation of a robust control strategy for a biopro-

cess. The overall control structure included an optimal feedfor-
ward controller and a multiloop feedback controller. Model
predictive control was also used for the control and optimiza-

tion of a number of bioprocesses (Ramaswamy et al., 2005;
Renard and Wouwer, 2008; Ashoori et al., 2009).

As for control studies on bioethanol, Hodge and Karim

(2002) developed an unstructured kinetic model incorporating
the effect of product, substrate, and pH inhibition on the
kinetic rates of ethanol fermentation by recombinant Z. mobi-
lis. The model was used in a nonlinear model predictive control

(NMPC) algorithm to control the product concentration dur-
ing fermentation to offset the inhibitory effects of product.
Arpornwichanop and Shomchoam (2009), on the other hand,

proposed a hybrid neural network and an on-line optimal con-
trol strategy for the control of a bioreactor for ethanol fermen-
tation. Simulation results showed that the neural network

provided a good estimate of unmeasured variables. The on-
line optimal control with the neural network estimator gave
a better control performance in terms of the amount of the
desired ethanol product, compared with a conventional

off-line optimal control method. Other researchers have also
studied the challenging issue of controlling variables at the
peak value where conventional controllers cannot handle

(Kishore and Patwardhan, 2002; Shah et al., 1999; Reddy
and Chidambaram, 1995).

The objectives of this paper are the study of the open loop

behavior of a validated model for ethanol fermentation using
Z. mobilis, then the implementation of a model predictive con-
trol strategy using different controlled configurations. A com-

parison between simple PI controllers with the model
predictive controller, and a study of the effect of control on
fermentation are also carried out. The numerical investigation
is based on an experimentally validated model of fermentation

Nomenclature

A matrix of linear constraints in NLMPC

B vector of constraints values for NLMPC
D disturbance estimates in NLMPC
D dilution rate (1/h)
F flow rate (l/h)

K sampling instant
K1, K2 saturation constants (g/l)
kc, ki PI controller settings, i.e. gain and gain divided by

integral time
kc0 initial value for controller gain
kp, kp0 process gain, initial process gain

mp maintenance factor of ethanol (1/h)
ms maintenance factor for substrate (1/h)
M control horizon in NLMPC
P ethanol concentration (g/l) also prediction horizon

in NLMPC
Pc limiting ethanol concentration for viable cells (g/l)
Pc

0
limiting ethanol concentration for non-viable cells

(g/l)
Pr productivity of ethanol (g/l hr)
r, R set point, vector of set points

S, S0 substrate, feed concentration (g/l)

V reactor volume (l)

t time
x state vector
Xv viable cell concentration (g/l)
Xnv non-viable cell concentration (g/l)

Xd dead cells concentration (g/l)
Y process output
yp measured plant output

Yx/p yield coefficient for conversion from biomass to
ethanol (–)

Yx/s yield coefficient for conversion from biomass to

substrate (–)
ld growth rate of dead cells (1/h)
lmax maximum growth rate of viable cells (1/h)
lmax

0
maximum growth rate of non-viable cells (1/h)

lnv growth rate of non-viable cells (1/h)
lV growth rate of dead cells (1/h)
Du, DU change in manipulated variable, vector of change

in manipulated variable
K matrix of weights on manipulated variables
C matrix of weights on controlled variables

r tuning parameter for Kalman Filtering
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