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Abstract In present paper operational matrix of integration for Laguerre polynomial is used to

solve fractional model of Bloch equation in nuclear magnetic resonance (NMR). The operational

matrix converts the Bloch equation in a system of linear algebraic equations. Solving system we

obtain the approximate solutions for fractional Bloch equation. Results are compared with existing

methods and exact solution. Graphs are plotted for different fractional values of time derivatives.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The fractional Bloch equations are used in physics, chemistry,
nuclear magnetic resonance (NMR), electron spin resonance

(ESR) and magnetic resonance imaging (MRI). The fractional
Bloch equation is generalization of standard Bloch equation
and obtained by replacing integer order time derivative to frac-
tional order Caputo derivative. Fractional calculus has many

real applications in science and engineering such as fluid-
dynamic traffic (He, 1999), biology (Robinson, 1981), vis-
coelasticity (Bagley and Torvik, 1983a,b, 1985), signal process-

ing (Panda and Dash, 2006), bioengineering (Magin, 2004) and
control theory (Bohannan, 2008). The fractional model of
Bloch equation is given as,

daMxðtÞ
dta

¼ x0MyðtÞ � MxðtÞ
T2

;

dbMyðtÞ
dtb

¼ �x0MxðtÞ � MyðtÞ
T2

;

dcMzðtÞ
dtc

¼ M0�MzðtÞ
T1

;

ð1Þ

where 0 < a; b; c 6 1; with initial conditions Mxð0Þ ¼ 0;
Myð0Þ ¼ 100 and Mzð0Þ ¼ 0:

Where MxðtÞ;MyðtÞ and MzðtÞ represent the system

magnetization in x; y and z component respectively, M0 is
the equilibrium magnetization, x0 is the resonant frequency

given by theLarmor relationship x0 ¼ cB0, where B0 is the sta-
tic magnetic field in z -component, T1 is spin-lattice relaxation
time, T2 is spin-spin relaxation time. The set of analytical solu-
tions for integer order Bloch equation is given as,

MxðtÞ ¼ e�t=T2 ðMxð0Þ cosx0tþMyð0Þ sinx0tÞ;
MyðtÞ ¼ e�t=T2ðMyð0Þ cosx0t�Mxð0Þ sinx0tÞ;
MzðtÞ ¼ Mzð0Þe�t=T1M0ð1� e�t=T1Þ:

ð2Þ

The fraction in time derivative suggests a modulation—or
weighting—of system memory (West et al., 2003; Magin

et al., 2008), the assumption of fractional derivatives plays
an important role affecting the spin dynamics described by
the Bloch equations in Eq. (1). More recently, time fractional
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model of Bloch equation was resolved using Homotopy pertur-
bation method (Kumar et al., 2014) and Petráš (2011) used
iterative method to solve fractional model of Bloch equation.

A generalization of the fractional Bloch equation by taking
delay in the time was reported through numerical solution
(Bhalekar et al., 2011). Recently Yu et al. (2014), gave an

implicit numerical method to solve fractional Bloch equation
in NMR. Some other existing methods to solve Bloch equation
in NMR are reported in the literature (Hoult, 1979; Sivers,

1986; Yan et al., 1987; Xu and Chan, 1999; Balac and
Chupin, 2008; Magin et al., 2009; Murase and Tanki, 2011;
Sun et al., 2016). In this paper we are using operational matrix
of fractional integration of Laguerre polynomial to solve frac-

tional model of Bloch equation as Laguerre polynomials are
more convenient for computational purpose. Recent investiga-
tions report the application of operational matrices to solve

fractional differential equations (Wu, 2009; Yousefi et al.,
2011; Kazem et al., 2013; Tohidi et al., 2013; Heydari et al.,
2014; Zhou and Xu, 2014; Bhrawy and Zaky, 2015; Singh

and Singh, 2016). Using operational matrix we convert the
Bloch equation into a system of linear algebraic equation
whose solution gives approximate solution for Bloch equation

in NMR.

2. Preliminaries and operational matrix

In this paper, the fractional order differentiations and integra-
tions are in well-known Caputo and Riemann-Liouville sense
respectively (Miller and Ross, 1993; Diethelm et al., 2005).

Definition 2.1. The Riemann-Liouville fractional order inte-

gral operator is given by

IafðxÞ ¼ 1

aj
Z x

0

ðx� tÞa�1
fðtÞdt a > 0; x > 0;

I0fðxÞ ¼ fðxÞ:

Definition 2.2. The Caputo fractional derivative of order b are
defined as

DbfðxÞ ¼ Im�bDmfðxÞ ¼ 1

ðm� bÞ
���

Z x

0

ðx� tÞm�b�1 dm

dtm
fðtÞdt;

m� 1 < b < m; x > 0:

The Laguerre polynomial is defined by Ali et al. (2015) and
Bhrawy et al. (2014)

LkðtÞ ¼
Xk
i¼0

ð�1Þi
i!

k

i

� �
ti; k ¼ 0; 1; 2; . . . ; n: ð3Þ

The set of Laguerre polynomial fL0ðtÞ;L1ðtÞ; . . . ;LnðtÞg
forms an orthonormal basis with respect to weight function

wðtÞ ¼ e�t on the interval [0, 1) with the following property,

Z 1

0

LiðtÞLjðtÞwðtÞdt ¼ dij; 8 i; j P 0; ð4Þ

where dij is the kronecker delta function.

A function fðtÞ, square integrable in [0, 1) may be
expressed as sum of Laguerre polynomial as follows:

fðtÞ ¼ lim
n!1

Xn
i¼0

ciLiðtÞ; ð5Þ

where ci ¼
R1
0

fðtÞwðtÞLiðtÞdt:
If the series is truncated at n ¼ m, then we have

f ffi
Xm
i¼0

ciLi ¼ FTwðtÞ; ð6Þ

where F and wðtÞ are ðmþ 1Þ � 1 matrices given by,

F ¼ ½c0; c1; . . . ; cm�T and wðtÞ ¼ ½L0ðtÞ;L1ðtÞ; . . . ;LmðtÞ�T:

Theorem 2.1. Let wðtÞ ¼ ½L0ðtÞ;L1ðtÞ; . . . ;LnðtÞ�T; be Laguerre
vector and consider a > 0; then

IaLiðtÞ ¼ IðaÞwðtÞ; ð7Þ
where IðaÞ ¼ hði; jÞð Þ, is ðnþ 1Þ � ðnþ 1Þ operational matrix of
fractional integral of order a and its ði; jÞ th entry is given by

hði; jÞ ¼
Xi

k¼0

Xj

r¼0

ð�1Þkþr i!r!Cðkþ aþ rþ 1Þ
ði� kÞ!ðkÞ!ðj� rÞ!ðr!Þ2Cðaþ kþ 1Þ

0 6 i; j 6 n: ð8Þ

Proof. Pl see (Bhrawy and Taha, 2012). h

3. Outline of method

In this section, we describe the outline of the method for the
construction of approximate solution of the Bloch equation.

Consider the following approximations:

daMxðtÞ
dta

¼ FT
1wðtÞ;

dbMyðtÞ
dtb

¼ FT
2wðtÞ;

dcMzðtÞ
dtc

¼ FT
3wðtÞ:

ð9Þ
Taking integral of order a; b and c in component Mx;My

and Mz respectively in Eq. (9) we get,

MxðtÞ ¼ FT
1 I

ðaÞwðtÞ þMxð0Þ; ð10Þ

MyðtÞ ¼ FT
2 I

ðbÞwðtÞ þMyð0Þ; ð11Þ

MzðtÞ ¼ FT
3 I

ðcÞwðtÞ þMzð0Þ: ð12Þ

Let

Mxð0Þ ¼ PTwðtÞ; Myð0Þ ¼ QTwðtÞ; Mzð0Þ ¼ RTwðtÞ:
ð13Þ

From Eqs. (10)–(13) we get,

MxðtÞ ¼ ðFT
1 I

ðaÞ þ PTÞwðtÞ; ð14Þ

MyðtÞ ¼ ðFT
2 I

ðbÞ þQTÞwðtÞ; ð15Þ

MzðtÞ ¼ ðFT
3 I

ðcÞ þ RTÞwðtÞ: ð16Þ
Using Eqs. (9), (14), (15) and (16) in Eq. (1) we get follow-

ing equations,

236 H. Singh



Download English Version:

https://daneshyari.com/en/article/5023030

Download Persian Version:

https://daneshyari.com/article/5023030

Daneshyari.com

https://daneshyari.com/en/article/5023030
https://daneshyari.com/article/5023030
https://daneshyari.com

