Accepted Manuscript

Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites

C.Y. Dan, Z. Chen, G. Ji, S.H. Zhong, Y. Wu, F. Brisset, H.W. Wang, V. Ji

PII: S0264-1275(17)30557-9

DOI: doi: 10.1016/j.matdes.2017.05.076

Reference: JMADE 3100

To appear in: Materials & Design

Received date: 18 March 2017 Revised date: 24 May 2017 Accepted date: 25 May 2017

Please cite this article as: C.Y. Dan, Z. Chen, G. Ji, S.H. Zhong, Y. Wu, F. Brisset, H.W. Wang, V. Ji, Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites, *Materials & Design* (2017), doi: 10.1016/j.matdes.2017.05.076

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure study of cold rolling nanosized *in-situ* TiB₂ particle reinforced Al composites

C.Y. Dan^a, Z. Chen^{b*}, G. Ji^c, S.H. Zhong^d, Y. Wu^{d*}, F. Brisset^a, H.W. Wang^b, V. Ji^a

^a ICMMO/SP2M, UMR CNRS 8182, Université Paris-Sud, Orsay 91405, France

^b State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China

^c Unité Matériaux et Transformations, CNRS UMR 8207, Université Lille 1, Villeneuve d'Ascq 59655, France

^d School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240,

PR China

Abstract

Nanosized TiB₂ particle reinforced Al matrix composites, cold-rolled at the true strain levels in the range from 0.9 to 3.0, were characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (SEM/EBSD) and transmission electron microscopy (TEM) in order to examine microstructure evolution associated with the different deformed states. Two types of TiB₂ particle-distributions were observed, the majority of TiB₂ reinforcement particles were agglomerated along the grain boundaries forming particle-clusters and the rest was dispersed inside the grains. The TiB₂ particle-clusters were found to improve local grain refinement by locally increasing the density of high angle grain boundaries (HAGBs). The small submicrometer sized Al grains were observed next to the TiB₂ particle-clusters in which dynamic recrystallization mechanism was partially promoted. On the contrary, the presence of the fine TiB₂ particles within the primary coarse Al grains generally led to the reduction of HAGBs by hindering the generation of dislocation cell structures and microshear bands during deformation.

Keywords: Metal matrix composite, Aluminum, Nano TiB₂ particle, Cold rolling, High angle grain boundary, Dynamic Recrystallization

1. Introduction

Particulate-strengthened metal matrix composites (P-MMCs) have been widely used in aerospace, automotive and manufacturing industries due to their remarkable mechanical properties, such as high strength, high hardness and high modulus [1, 2].

Download English Version:

https://daneshyari.com/en/article/5023182

Download Persian Version:

https://daneshyari.com/article/5023182

<u>Daneshyari.com</u>