Accepted Manuscript

Strain rate dependence of ferrite dynamic restoration mechanism in a duplex low-density steel

N. Haghdadi, A. Zarei-Hanzaki, E. Farabi, P. Cizek, H. Beladi, P.D. Hodgson

PII: S0264-1275(17)30670-6

DOI: doi: 10.1016/j.matdes.2017.07.009

Reference: JMADE 3199

To appear in: Materials & Design

Received date: 2 May 2017 Revised date: 16 June 2017 Accepted date: 5 July 2017

Please cite this article as: N. Haghdadi, A. Zarei-Hanzaki, E. Farabi, P. Cizek, H. Beladi, P.D. Hodgson, Strain rate dependence of ferrite dynamic restoration mechanism in a duplex low-density steel, *Materials & Design* (2017), doi: 10.1016/j.matdes.2017.07.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Strain rate dependence of ferrite dynamic restoration mechanism in a

duplex low-density steel

N. Haghdadi¹, A. Zarei-Hanzaki², E. Farabi¹, P. Cizek¹, H. Beladi¹ and P. D. Hodgson¹

¹Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia

²School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran,

Tehran, Iran

Tel.: +61 3 5247 9383; Fax: +61 3 5227 1103; E-mail address: nhaghdad@deakin.edu.au

Abstract

ferrite major dynamic softening mechanisms, particularly in duplex

microstructures, have long been a matter of debate among steel scientists. It has been shown

in the present work that a marked increase in the strain rate at a high temperature leads to a

transition in the ferrite softening mechanism in low density steels. In contrast to the current

widespread view, ferrite was found to soften through continuous dynamic recrystallization at

a low strain rate and via discontinuous dynamic recrystallization at a high strain rate. The

latter mechanism is largely associated with the interphase mantle regions, rather than the

scarce original ferrite-ferrite boundaries. In these regions, the new grains were observed to

develop through the growth of highly-misoriented subgrains.

Keywords: hot deformation; restoration; strain rate; low density steel

1. Introduction

Considering the extensive use of steels in automobiles, any reduction in the density of

steels while tailoring satisfying mechanical performance would make automotives lighter.

This would then result in reduced emissions. Research on the first generation of low density

steels goes back to 1930s [1]. The properties of the advanced Al-containing low density

steels, however, have been only recently studied [2-4], and there are still many unresolved

aspects which need to be clarified. Conventional low density steels are either austenitic or

1

Download English Version:

https://daneshyari.com/en/article/5023354

Download Persian Version:

https://daneshyari.com/article/5023354

<u>Daneshyari.com</u>